Recent advances in functional magnetic resonance imaging (fMRI) techniques and machine learning have shown that it is possible to decode distinct brain state from complex brain activities, which have raised widespread concern. Deep learning is a popular method of machine learning and has achieved remarkable results in the field of speech recognition, image recognition and so on. However, there are many challenges in medical image analysis when using deep learning. Aiming to solve the difficulty of subject-transfer decoding, high dimensional feature extraction and slow computation, here we proposed a deep convolutional decoding (DCD) model. First, an architecture of deep convolutional network became a subject-transfer feature extractor on task-fMRI (tfMRI) data. Then, the high dimensional abstract feature was used to identify certain brain cognitive state. The experimental results show that our proposed method can achieve higher decoding accuracy of brain state across different subjects compared with traditional methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.