Within this work we explore texture analysis of optical coherence tomography images and machine learning for automated detect classification of breast biopsies. Under an approved IRB protocol, breast biopsy specimens from 100 patients were imaged with a high resolution OCT system providing 3.7 micron axial resolution. The texture features extracted were first order statistics (histogram distribution) and second order statistics (such as GLCM). Binary classification was carried out for two cases: 1) risk 0 (no risk of cancer) versus everything else and 2) risk 3 (cancer) versus everything else.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.