Deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition from natural images. In contrast, object recognition from remote sensing images is more challenging, due to the complex background and inadequate data for training a deep network with a huge number of parameters. We propose a unified deep CNN, called DeepPlane, to simultaneously detect the position and classify the category of aircraft in remote sensing images. This model consists of two correlative deep networks: the first one is designed to generate object proposals as well as feature maps and the second one is cascaded upon the first one to perform classification and box regression in one shot. The “inception module” is introduced to tackle the insufficient training data problem that is one of the most challenging obstacles of detection in remote sensing images. Extensive experiments demonstrate the efficiency of the proposed DeepPlane model. Specifically, DeepPlane could model detection and classification jointly and achieves 91.9% mAP in six categories of aircraft, which advances the state-of-the-art, sometimes considerably, for both tasks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.