In recent years various kinds of biosensors for the detection of pathogens have been developed. A genosensor consists in the immobilization, onto the surface of a chosen transducer, of an oligonucleotide with a specific base sequence called capture probe. The complementary sequence (the analytical target, i.e. a specific sequence of the DNA/RNA of the pathogen) present in the sample is recognized and captured by the probe through the hybridization reaction. The evaluation of the extent of the hybridization allows one to confirm whether the sample contains the complementary sequence of the probe or not. Electrochemical transducers have received considerable attention in connection with the detection of DNA hybridization. Moreover, recently, with the emergence of novel photoelectrochemically active species and new detection schemes, photoelectrochemistry has resulted in substantial progress in its analytical performance for biosensing applications. In this paper, some examples of electrochemical genosensors for multiplexed pathogen detection are shown. Moreover, the preliminary experiments towards the development of a photoelectrochemical genosensor using a TiO2 – nanocrystal-modified ITO electrode are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.