NASA’s Habitable Worlds Observatory will consist of a segmented telescope and high contrast coronagraph to characterize exoplanets for habitability. Achieving this objective requires an ultra-stable telescope with wavefront stability of picometers in certain critical modes. The NASA funded Ultra-Stable Large Telescope Research and Analysis – Technology Maturation program has matured key component-level technologies in 10 areas spanning an “ultra-stable” architecture, including active components like segment edge sensors, actuators and thermal hardware, passive components like low distortion mirrors and stable structures, and supporting capabilities like precision metrology. This paper will summarize the final results from the four-year ULTRA-TM program, including advancements in performance and/or path-to-flight readiness, TRL/MRL maturation, and recommendations for future work.
The phase-apodized-pupil Lyot coronagraph (PAPLC) produces a one-sided dark zone, with, in theory, a 2 λ/D inner working angle at contrasts of 10^-10 and high planet throughput, perfect for future space missions such as the Habitable Worlds Observatory. The two DMs in the wavefront control system serve as the apodizer. We present laboratory results on a segmented telescope pupil in broadband light on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed. A Zernike wavefront sensor, which uses the light rejected by the coronagraph, simultaneously measures any high-order aberrations. We report on the achieved broadband contrast within a 10% and 20% bandpass, under natural and artificial environmental conditions.
We present recent laboratory results demonstrating high-contrast coronagraphy for the future space-based large IR/Optical/Ultraviolet telescope recommended by the Decadal Survey. The High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed aims to implement a system-level hardware demonstration for segmented aperture coronagraphs with wavefront control. The telescope hardware simulator employs a segmented deformable mirror with 37 hexagonal segments that can be controlled in piston, tip, and tilt. In addition, two continuous deformable mirrors are used for high-order wavefront sensing and control. The low-order sensing subsystem includes a dedicated tip-tilt stage, a coronagraphic target acquisition camera, and a Zernike wavefront sensor that is used to measure and correct low-order aberration drifts. We explore the performance of a segmented aperture coronagraph both in “static” operations (limited by natural drifts and instabilities) and in “dynamic” operations (in the presence of artificial wavefront drifts added to the deformable mirrors), and discuss the estimation and control strategies used to reach and maintain the dark-zone contrast using our low-order wavefront sensing and control. We summarize experimental results that quantify the performance of the testbed in terms of contrast, inner/outer working angle and bandpass, and analyze limiting factors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.