A study was conducted to determine the feasibility of using alternative chromophores in light-activated surgical adhesives. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40, blue #1, and green food coloring consisting of yellow #5 and blue #1. The study consisted of three components. First, the absorption profiles of the five chromophores, both diluted in deionized water and bound to protein, were recorded with a UV-Vis-NIR spectrophotometer. Second, the effect of accumulated thermal dosages on the stability of the absorption profiles was investigated. Third, the stability of the absorption profiles of the chromophore solutions when exposed to ambient light for an extended period of time was investigated.
The peak absorption wavelengths of ICG, MB, red #40, and blue #1, were found to be 780 nm, 665 nm, 500 nm, and 630 nm respectively. The green food coloring had two absorption peaks at 417 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of the ICG shifted to 805 nm when bound to protein. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperatures up to 100 degrees C. Negligible change in absorption with accumulated thermal dose was observed for any of the three food colorings investigated. Photobleaching was observed in both ICG and MB solutions with exposure to a white light source. An 88% decrease in absorption was seen in ICG deionized water solution after 7 days of exposure with a corresponding 33% decrease in absorption seen in the MB deionized water solution. A negligible drop in absorption was observed from exposure to ambient light for a 12-week period with the three food colorings investigated.
The use of indocyanine green-doped albumin protein solders has been shown to vastly improve the anastomotic strength that can be achieved by laser tissue repair techniques, while at the same time minimizing collateral thermal tissue damage. However, the safety of the degradation products of the chromophore following laser irradiation is uncertain. Therefore, we studied the feasibility of using alternative chromophores in terms of temperature rise at the solder/tissue interface, the extent of thermal damage in the sourrounding tissue, and the tensile strength of repairs. Biodegradable polymer scaffolds of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid), using a solvent-casting and particulate-leaching technique. The porous scaffold acted as a carrier to the traditional protein solder composition of serum albumin and an absorbing chromophore mixed in deionized water. Two commonly used chromophores, indocyanine green and methylene blue were investigated, as well as blue and green food colorings. Temperature rise at the solder surface and at the interface between the solder and tissue were monitored by an IR temperature monitoring system and a type-K thermocouple, respectively, and the extent of thermal damage in the underlying tissue was determined using light microscopy. As expected, temperature rise at the solder/tissue interface, and consequently the degree of collateral thermal tissue damage, was directly related to the penetration depth of the laser light in the protein solder. Optimal tensile strength of repairs was achieved by selecting a chromophore concentration that resulted in a temperature of 66 ± 3°C at the solder/tissue interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.