The three-dimensional measuring system based on structured light has the advantages of propermeasuring range, high speed and non-contact measuring mode,and it is widely used in medical and manufacturing fields. The strip center extraction is one of the key steps in the line structured light vision measurement system. According to the line structure laser measurement model, the essence of the line structure measurement is to extract the pixel coordinates of the laser beam and substitute them into the measurement mathematical model formula to calculate the spatial coordinates of the measured points. Thus the accuracy and precision of laser strip pixel coordinate extraction directly affect the final calculation results. When the laser is projected onto the surface of the object to be measured, it is susceptible by the surface material of the object, ambient light and other factors, which may lead to speckle, uneven brightness of the light, wide range of light width variation and other problems. In this paper, an adaptive method for extracting light strips is proposed to solve the problems of speckle and wide width range of the light strips.
Catenary is an important part of electrified railway, and its geometric parameters are important parameters reflecting the safe and stable operation of locomotives. With the improvement of its speed, there are higher requirements for high-accuracy and real-time detection of geometric parameters of catenary. The existing systems have problems of long sampling interval, low real-time performance, and light-sensitive. Aiming at the actual requirement of dynamic measurement of catenary geometric parameters, a non-contact catenary geometric parameter detection system based on machine vision was developed. Firstly, a measurement model based on high-power line lasers and high-resolution area cameras was established to meet the application requirements. The measurement principle of the system was analyzed and the detailed formulas were deduced. Secondly, image difference, laser spot roundness analysis and other image processing algorithms were used to quickly and accurately detect the characteristics of laser points on the contact line with complex background. Based on the measurement model and algorithms mentioned above, the hardware and software platform of the system were built, and fast image acquisition and processing was realized by using multi-thread programming technology on high-performance industrial computer, which solved the problems of long sampling interval and low real-time performance during the measurement. Real-time image storage and display and preservation of detection results were realized in the software. Finally, a preliminary experiment was performed on the prototype, and the accuracy of the measurement results was analyzed. Experiment results showed that the system works stably and has high accuracy, which meets the practical application requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.