Two-dimensional (2D) atomic transition metal dichalcogenides (TMDCs) have distinct emission properties, which can be applied for ultrathin detectors and light-emitters in the future. In this study, strain and photoluminescence of MoS2 monolayer on a 3D substrate through a two-step growth procedure was analyzed. The structural of materials and those optical properties of monolayer TMDCs fabricated on the planar and nonplanar substrate were examined. Monolayer MoS2 grown on the nonplanar substrate exhibited uniform strain reduction and luminescence intensity. The fabrication of monolayer MoS2 on a nonplanar substrate increased the light extraction efficiency. In the future, strain-reduced 2D TMDC materials grown on a nonplanar substrate can be employed as novel light-emitting devices for applications in light-emitters, communication, and displays for ultrathin optoelectronic integrated systems.
In this work, we present the model of plasmonic chrial nanolasers composed of aluminum-coated gallium-nitride (GaN) gammadions, which may lase with a high degree of circular polarization at room temperatures. Using the finite-element method, we examine resonant modes of the four-fold rotationally symmetric cavities of gammadions whose resonant frequencies lie in the gain spectrum of GaN. We find a degenerate doublet of resonant modes which can couple to plane waves in the far-field zone above gammadions. Their near-field profiles exhibit localized distribution in the arms of gammadions and a Fabry-Perot standing-wave pattern along the post. In practice, fabrication imperfections would inevitably spoil the four-fold rotation symmetry of gammadions. Typical perturbation could lift the degeneracy of doublet and leads to mixing of the two degenerate modes which may still output signals with observable handedness above gammadions. Considering a gammadion cavity with a single elongated arm, we show that the magnitude of dissymmetry factor of its resonant mode can be larger than unity. Our calculations are consistent with the experimental results, indicating that the right-handed gammadion cavities lase with a magnitude of dissymmetry factors near 1 at a wavelength of 364 nm. The dimensionless effective mode volume scaled by the cube of effective wavelength is 2.62, reflecting a modal distribution remarkably confined in the plasmonic structures and the capability of enhancing the spontaneous-emission rate noticeably. These chiral nanolasers with an ultrasmall footprint could be potentially utilized as future circularly-polarized photon source at the chip level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.