Quantitative micro-elastography (QME) is a compression-based optical coherence elastography technique that visualizes micro-scale tissue stiffness. Current benchtop QME shows great potential for identifying cancer in excised breast tissue (96% diagnostic accuracy), but cannot image cancer directly in the patients. We present the development of a handheld QME probe to directly image the surgical cavity in vivo during breast-conserving surgery (BCS) and a preliminary clinical demonstration. The results from 21 patients indicate that in vivo QME can identify residual cancer based on the elevated stiffness by directly imaging the surgical cavity, potentially contributing to a more complete cancer excision during BCS.
Re-excision following breast-conserving surgery (BCS) due to suspected residual cancer left from the primary surgery causes substantial physical, psychological, and financial burdens for patients. This study provides a first-in-human clinical study of in vivo quantitative micro-elastography (QME) for in-cavity identification of residual cancer. A custom-built handheld QME probe is used to directly scan the surgical cavity for imaging the micro-scale tissue stiffness during BCS. In vivo QME of 21 patients, validated by co-registered histopathology of the excised specimens, demonstrates the capability to detect residual cancer based on its elevated micro-scale stiffness, potentially contributing to a more complete cancer removal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.