We report about the experimental work related to hierarchical structures at the Diamond I13L beamlines. The I13-2 Imaging and I13-1 Coherence beamlines provide imaging with micro- and nano-resolution. The Diamond II upgrade for the synchrotron source and the OCTOPI upgrade for I13L provide new opportunities for expanding the existing scientific areas in multiscale and operando imaging. We describe the scientific research benefitting from the instrumental upgrade. Comparable recording times across all length scales will enable hierarchical operando imaging. With the implementation of automated high-throughput data acquisition and analysis, large numbers of samples will be analyzed.
We report about multiscale tomography with high throughput at the Diamond beamline I13L. The beamline has the purpose of multi-scale and operando imaging and consists of two independent branchlines operating in real and reciprocal space. The imaging branch -called Diamond-Manchester branchline- hosts micro-tomography, grating interferometry and a full-field microscope. For rapid recording a broad spectrum of the undulator radiation is used either with band-passing the light with a combination of a filter and a deflecting mirror or using a multilayer monochromator. For all the methods similar recording times can be achieved, with typical scanning times of some minutes and covering the resolution range from microns to the 100nm range. Most recently a robot arm has been installed to increase the throughput to 300 samples per day. The system is now implemented for user operation in remote operation mode for the micro-tomography setup and can be expanded to the two other experiments. The instrumental capabilities are applied on various topics such as the study of biodiversity of insects or the structural variations of electrode materials in batteries. Fast recording with dedicated sample environments (not using the sample changing robot) enables operando studies in many areas, the charging/discharging cycles on batteries, the degradation of teeth enamel under various conditions or loading brine sandstone mixtures with CO2, to name some examples. For imaging with highest spatial resolution we managed to improve significantly the recording speed of ptycho-tomography, which is now in the order of hours and will be reduced further. We demonstrated in the past 2-D recording with 10kHz and expand the instrumental capability with specific hardware dependent triggering and scanning schemes. We expand the research program for multi-scale imaging across both branchlines (imaging and coherence branchlines) with first studies such as batteries, brain research, concrete.
A possible improvement on a new method of single acquisition hyperspectral (spectroscopic) ptychographic imaging, making use of a hyperspectral X-ray camera, is presented. Undulator tapering is used at the synchrotron to broaden the energy distribution of the X-ray beam to a suitable level for edge subtraction. The combination of a coherent imaging method such as ptychography with spectroscopy poses difficulties in experimental setup design regarding probe size. The final goal of the experiment, a K-edge subtraction, is not successful, but the technique is nevertheless promising. The capability of resolving the absorption edge applies to a wide range of research areas, such as element specific investigations in biological, materials, and earth sciences. We discuss the problems and their possible solutions.
We report about our current capabilities and future plans in multi-scale imaging with high recording speed. For micro-tomographic imaging an automated system is used measuring up to 300 samples per day. For sub-micron and nano measurements the so-called polychromatic ‘pink beam’ is employed. The larger energy bandwidth compared to monochromatic beam permits recording times similar to microtomography. For highest resolution namely ptychography the acquisition time for tomographic scans is currently in the order of hours and below an hour in the near future. The current multi-scale science and the scientific perspective with the Diamond beamline I13L upgrade will be presented.
The DIAMOND beamline I13L is dedicated to multi-scale and multi-modal imaging in real and reciprocal space. The beamline consists of two independently operating experimental stations, located at a distance of more than 200 m from the source. The Imaging Branch performs micro-tomography with in-line phase contrast in the 6-30 keV energy range. In addition, a grating interferometry setup and a full-field microscope for nano-tomography are currently implemented. Other techniques providing high-resolution three-dimensional information, in particular coherent X-ray diffraction, are hosted on the Coherence Branch. All imaging methods are tested to operate with large energy bandwidths and therefore shorter exposure times. To this end, two options are currently used: the so-called ‘pink-beam’ mode using a reflecting mirror and X-ray filters and monochromatic mode using a multilayer monochromator. The operation mode enables science for in-situ and operando studies across a wide range of scientific areas.
The Diamond Beamline I13L is dedicated to micro- and nano- imaging, with two independently operating branchlines. The imaging branch preforms imaging in real space, with In-line phase contrast imaging and grating interferometry at micrometre resolution and full-field transmission microscopy up to 50nm spatial resolution. Highest spatial resolution is achieved on the coherence branchline, where diffraction imaging methods such as Ptychography and Bragg-CDI are performed. The article provides an update about the experimental capabilities at the beamline with an emphasis on the rapidly evolving ptychography capabilities. The latter has evolved to an user-friendly method with non-expert users able to explore their science without any specific a-priory knowledge.
Preserving the coherence and wavefront of a diffraction limited x-ray beam from the source to the experiment poses stringent quality requirements on the production processes for X-ray optics. In the near future this will require on-line and in-situ at-wavelength metrology for both, free electron lasers and diffraction limited storage rings. A compact and easy to move X-ray grating interferometry (XGI) setup has been implemented by the Beamline Optics Group at PSI in order to characterize x-ray optical components by determining the aberrations from reconstructing the x-ray wavefront. The XGI setup was configured for measurements in the moire mode and tested with focusing optic at Swiss Light Source, Diamond Light Source and LCLS. In this paper measurements on a bendable toroidal mirror, a zone plate, a single and a stack of beryllium compound refractive lenses (CRL) are presented. From these measurements the focal position and quality of the beam spot in terms of wavefront distortions are determined by analysing the phase-signal obtained from the XGI measurement. In addition, using a bendable toroidal mirror, we directly compare radius of curvature measurements obtained from XGI data with data from a long-trace profilometer, and compare the CRL wavefront distortions with data obtained by ptychography.
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range
between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The
imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre
resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle
information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a
field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to
adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging
techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional
imaging with the highest resolution.
The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester
Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology
and more. The present paper provides an overview about the current status of the beamline and the science addressed.
The Diamond Beamline I13L is designed to imaging on the micron- and nano-lengthsale with X-rays of energies between 6 and 30 keV [1]. Two independently operating branchlines and endstations have been built at distance of more than 200m from the source for this purpose. The imaging branch is dedicated for imaging in real space, providing In-line phase contrast imaging and grating interferometry with micrometre resolution and full-field transmission microscopy with 50nm spatial resolution.
On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) and Fourier-Transform holography are currently developed. Because of the large lateral coherence length available at I13, the beamline hosts numerous microscopy experiments. The coherence branchline in particular contains a number of unique features. New instrumental designs have been employed such as a robot arm for the detector in diffraction experiments and a photon counting detector for diffraction experiments. The so-called ‘mini-beta’ layout in the straight section of the electron storage ring permits modulating the horizontal source size and therefor the lateral coherence length.
We will present the recent progress in coherent imaging at the beamline and the sciences addressed with the instrumental capabilities.
Reference:
[1] C. Rau, U. Wagner, Z. Pesic, A. De Fanis Physica Status Solidi (a) 208 (11). Issue 11 2522-2525, 2011, 10.1002/pssa.201184272
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.