The advent of extreme ultraviolet (EUV) and soft x-ray free electron lasers (FELs) has enabled nonlinear optical experiments at wavelengths shorter than the visible-UV range. An important class of experiments is those based on the four-wave-mixing (FWM) approach, which are often based on interactions between pulses at different wavelengths. The exploitation of multiple EUV/soft x-ray wavelengths is not straightforward, but it can significantly expand the range of applications. In this manuscript we report on an experimental approach, based on the concomitant use of a non-collinear split-delay-and-recombination unit (“mini-Timer”) and on a two-color seeded FEL emission scheme (“twin-seed mode”). We used a diamond sample for demonstrating the capability of this setup of generating and detecting a FWM signal stimulated by two-color EUV FEL pulses. This approach can be further exploited for developing experimental methods based on non-linear EUV/x-ray optics.
The optical klystron enhancement to a self-amplified spontaneous emission (SASE) free electron laser (FEL) has been deeply studied in theory and in simulations. In this FEL scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. We report the first experiment that has been carried out at the FERMI facility in Trieste, of enhancement to a SASE FEL by using the optical klystron scheme. XUV photons have been produced with an intensity several orders of magnitude larger than in pure SASE mode. The impact of the uncorrelated energy spread of the electron beam on the optical klystron SASE performance has been also investigated.
C. Spezzani, E. Ferrari, E. Allaria, F. Vidal, L. Lounis, A. Ciavardini, R. Delaunay, F. Capotondi, E. Pedersoli, M. Coreno, C. Svetina, L. Raimondi, M. Zangrando, R. Ivanov, I. Nikolov, A. Demidovich, M. Danailov, G. De Ninno, H. Popescu, M. Eddrief, M. Kiskinova, M. Sacchi
Magnetization control without applying magnetic fields has potential for applications in sensors and devices. In Fe/MnAs/GaAs(001), the Fe magnetization can be modified by acting on the MnAs microstructure via temperature control, without applying external magnetic fields. Here we use an optical laser pulse to vary the local temperature and an x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics in a time-resolved resonant scattering experiment, both pulses having ~100 fs duration. Modifications of the MnAs microstructure take place within a few ps, followed by a slower dynamics driven by thermal diffusion. We show that a single optical laser pulse can reverse the Fe magnetization locally, the process being driven not by the fast modifications of the MnAs structure, but rather by its slower return to equilibrium.
L. Badano, E. Ferrari, E. Allaria, S. Bassanese, D. Castronovo, M. Danailov, A. Demidovich, G. De Ninno, S. Di Mitri, B. Diviacco, W. Fawley, L. Frohlich, G. Gaio, L. Giannessi, G. Penco, S. Spampinati, C. Spezzani, M. Trovò, M. Veronese
FERMI is the first user facility based upon an externally seeded free-electron laser (FEL) that delivers a coherent and tunable UV radiation (down to 4 nm at the fundamental) in a number of different configurations. A microbunching instability (MBI) developing in the bunch compressors and in the rest of the linac can degrade the quality of the high brightness electron beam sufficiently to reduce the FEL output intensity and spectral brightness. A laser heater installed in the low energy (100 MeV) part of the FERMI accelerator increases the local energy spread to provide Landau damping against this instability. In this paper we summarize the main results obtained with the FERMI laser heater since it commissioning in 2012. We present the measurement of the reduction of the incoherent energy spread at the linac exit induced by the heating of the electron beam at the beginning of the linac. We also discuss the positive effects of such heating upon the emission of coherent optical transition radiation and the FEL performances both in terms of intensity and spectrum. Moreover, we report about results that have been used to experimentally demonstrate that for transversely uniform heating the local energy spread augmentation is characterized by a non-Gaussian distribution that can be preserved up to the FEL undulator entrance with a significant impact on the performance of high-gain harmonic generation (HGHG) FELs, especially at soft x-ray wavelengths.
We present the optical layout of a reflective grating compressor specifically designed for extreme-ultraviolet FEL sources. The working principle is based on the use of a couple of constant-line-spaced gratings used at grazing incidence and illuminated in divergent light. The two possible grating configurations, namely the on-plane and off-plane, are analyzed and compared. The Group Delay Dispersion (GDD) introduced by the compressor is analytically analyzed and quantified. The spatial chirp also is considered, and its effect analyzed. The deviation from the ideal case in which the instrument is feed with a collimated beam is considered. The effect of the beam divergence on the compressor response is quantified and the attenuation of this effect by a “de-tuning” of the compressor is proposed. This solution avoids the use of a pre-collimating optics, therefore incrementing the total instrumental throughput. Finally, it is shown the optical design of an actual compressor for the FERMI FEL, that can be inserted in the optical path without any deviation or translation of the photon beam with respect to the nominal path.
P. Finetti, E. Allaria, B. Diviacco, C. Callegari, B. Mahieu, J. Viefhaus, M. Zangrando, G. De Ninno, G. Lambert, E. Ferrari, J. Buck, M. Ilchen, B. Vodungbo, N. Mahne, C. Svetina, C. Spezzani, S. Di Mitri, G. Penco, M. Trovò, W. Fawley, P. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivimäki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J. Grünert, A. De Fanis, M. Meyer, A. Knie, S. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J. Gautier, J. Lüning, P. Zeitoun, L. Giannessi
FERMI, based at Elettra (Trieste, Italy) is the first free electron laser (FEL) facility operated for user experiments in
seeded mode. Another unique property of FERMI, among other FEL sources, is to allow control of the polarization state
of the radiation. Polarization dependence in the study of the interaction of coherent, high field, short-pulse ionizing
radiation with matter, is a new frontier with potential in a wide range of research areas. The first measurement of the
polarization-state of VUV light from a single-pass FEL was performed at FERMI FEL-1 operated in the 52 nm-26 nm
range. Three different experimental techniques were used. The experiments were carried out at the end-station of two
different beamlines to assess the impact of transport optics and provide polarization data for the end user. In this paper
we summarize the results obtained from different setups. The results are consistent with each other and allow a general
discussion about the viability of permanent diagnostics aimed at monitoring the polarization of FEL pulses.
Cristian Svetina, Nicola Mahne, Lorenzo Raimondi, Luca Rumiz, Marco Zangrando, Enrico Allaria, Filippo Bencivenga, Carlo Callegari, Flavio Capotondi, Davide Castronovo, Paolo Cinquegrana, Paolo Craievich, Ivan Cudin, Massimo Dal Forno, Miltcho Danailov, Gerardo D'Auria, Raffaele De Monte, Giovanni De Ninno, Alexander Demidovich, Simone Di Mitri, Bruno Diviacco, Alessandro Fabris, Riccardo Fabris, William Fawley, Mario Ferianis, Eugenio Ferrari, Lars Froehlich, Paolo Furlan Radivo, Giulio Gaio, Luca Giannessi, Maya Kiskinova, Marco Lonza, Benoit Mahieu, Claudio Masciovecchio, Ivaylo Nikolov, Fulvio Parmigiani, Emanuele Pedersoli, Giuseppe Penco, Mauro Predonzani, Emiliano Principi, Fabio Rossi, Claudio Scafuri, Claudio Serpico, Paolo Sigalotti, Simone Spampinati, Carlo Spezzani, Michele Svandrlik, Mauro Trovo, Alessandro Vascotto, Marco Veronese, Roberto Visintini, Dino Zangrando
FERMI@Elettra is the first seeded VUV/soft X-ray FEL source. It is composed of two undulatory chains: the low energy branch (FELl) covering the wavelength range from 20 nm up to 100 nm, and the high energy branch (FEL2, employing a double stage cascade), covering the wavelength range from 4 nm up to 20 nm. At the end of 2012 FELl has been opened to external users while FEL2 has been turned on for the first time having demonstrated that a double cascade scheme is suitable for generating high intensity coherent FEL radiation. In this paper we will share our experience and will show our most recent results for both FERMI FELl and FEL2 sources. We will also present a brand new machine scheme that allows to perform two-colour pump and probe experiments as well as the first experimental results.
S. Di Mitri, E. Allaria, P. Cinquegrana, P. Craievich, M. Danailov, A. Demidovich, G. De Ninno, B. Diviacco, W. Fawley, L. Froelich, L. Giannessi, R. Ivanov, M. Musardo, I. Nikolov, G. Penco, P. Sigalotti, S. Spampinati, C. Spezzani, M. Trovò, M. Veronese
After less than two years of commissioning the FERMI@Elettra free electron laser is now entering into the operation
phase and is providing light to the first user experiments. To reach the final ambitious goals of providing high power
coherent pulses with fundamental wavelengths down to 4 nm, the system will need further studies and additional
commissioning time in 2011 when fine tuning of the major systems such as the electron gun and the main accelerator
will take place. Nevertheless, FERMI is already able to provide light with unique characteristics allowing Users to
perform experiments not possible with other facilities. Based on a 1.5 GeV electron linear accelerator, FERMI@Elettra
has two seeded FEL lines that cover the whole spectral range from 100 nm down to 4 nm with fully coherent pulses. The
use of the high gain harmonic generation scheme initiated by a tunable laser in the UV allows FERMI to produce light
characterized by both transverse and full temporal coherence. The use of specially designed undulators allows full
control of the FEL polarization and can be continuously varied from linear to circular in any orientation or ellipticity.
Here we will report about the first results and the future plans for FERMI@Elettra.
The techniques for synchronizing ultra fast lasers to external radio frequency reference sources are well established and characterized in the literature. However, there is little data on the actual light-to-light jitter that can be achieved in different synchrotron operation modes when an external laser is locked to the storage ring master clock. Here we present first results of the synchronization of an ultra fast Cr:LiSAF laser with synchrotron radiation generated by the ELETTRA storage ring in different filling modes. In addition, data on the synchronization of the same laser with the ELETTRA FEL pulses, both in free running and Q-switching regimes, are reported. In our experiments, laser-to-RF locking was continuously monitored using built-in phase detection. The laser light to storage ring light locking was characterized by simultaneous acquisition of the two/three pulse trains by a streak camera. In addition, pulse jitter was determined by processing of the signal of fast photodiodes monitoring the different light beams.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.