Ultra-realistic virtual object representation is an old dream of humanity. From the 3D Paleolithic rock painting to the late Michael Jackson holographic shows, humans have investigated display solutions to give life to the abstraction. The incredible opportunities given by the digital revolution have paved the way to the recent development of innovative volumetric displays. These complex solutions are however still limited in the visual experience they can offer to the viewer. In a more concerning manner such devices often appear as empty shells as their effective usefulness is not yet clearly defined. Recently, we have proposed an original volumetric display concept based on a 360° projection configuration. Inspired from the pepper ghost concept and from the praxinoscope design of the end of the XIX century, our display mixes real projection on transparent retroreflective surface and virtual images superimposition. This development has been made in collaboration with a group of live performing artists in France. The 360° display has been used to present an original creation of the artists and the confrontation with the public has highlighted some unexpected properties of this family of displays. We describe here the technological concept of our display and the evolutions we target to improve the visual rendering. The collaboration project with the artists is also presented and we give our analysis on the feedback of the public.
We report high resolution (873 x 500), active-matrix, GaN-based LED microdisplays with a pixel pitch of 10 μm. They exhibit the highest resolution for the smallest pixel pitch ever reported for GaN microdisplays. High-density GaN μLED arrays were first patterned at 10-μm pitch on sapphire substrates. Arrays were then hybridized on CMOS active-matrix using the microtube technology. Blue and green monochrome prototypes have been realized. Full video, high-resolution images have been obtained. The performance of these GaN-based microdisplays make them suitable for a wide range of applications from augmented reality and head-up displays to pico- and compact projectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.