Gold nanoparticles (AuNPs) were the basis for the earliest research in the field of surface enhanced Raman scattering (SERS). Coupling of their surface plasmon resonances creates hot-spots of high electromagnetic intensities found to be very useful for sensing applications. However, chemically synthesized AuNPs in suspension are usually polydisperse and when arranged on a SERS substrate, lack periodic spatial organization. This leads to large variations in the enhancement factor (EF) which is detrimental to the sensing capabilities of the SERS substrate. Here, we showcase reproducible fabrication of an array of spherical AuNPs at the apices of shell isolated silicon nanocones with a homogeneous EF for SERS. The AuNPs are produced through discrete rotation glancing angle deposition of Au on shell isolated silicon nanocones (SI-SiNC) with square lattice periodicity and 250 nm pitch. By tuning the substrate tilt angle, substrate rotation angle and deposition thickness, the location and the size of the AuNPs formed can be controlled. Using this method, we successfully fabricated 60 nm AuNPs positioned at the apices of the nanocone array. Finite-Difference Time-Domain (FDTD) simulations were performed to visualize the electric field enhancement and verify conditions such as tip radius and oxide shell thickness to optimize the same. The EF was then experimentally calculated by performing SERS measurements on benzenethiol (BT) functionalized AuNPs at 400 unique points over the SI-SiNC substrate and compared to measurements of pure BT solution. A homogeneous substrate EF of (2.05 ± 0.05) ∙107 (99% confidence interval) at par with literature was calculated for the C-S in-plane deformation mode, δCS, of the BT molecule excited at 1077 cm-1. Our work highlights the advantages of nanofabrication for homogeneous SERS EF substrates.
We study the modification of fluorescence emission and decay rate of single fluorescent molecules in the near field of a periodic plasmonic nanostructure formed by a square lattice of Au hollow conical pillars with a periodicity of 250 nm. We perform nanometer-resolved imaging of the LDOS by simultaneously mapping the position and the decay rate of photoactivatable single-molecules with a novel super-resolved microscopy approach which enables multiplexed and super-resolved fluorescence lifetime imaging at the single-molecule level (smFLIM) with a field of view of ~10 µm2. We observe the LDOS modification of such optically rich material at different illumination conditions and we measure a large Purcell factor enhancement which increases for oblique illumination of the nanostructure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.