We describe work at Lawrence Berkeley National Laboratory (LBNL) to develop enhanced performance, fully
depleted, back-illuminated charge-coupled devices for astronomy and astrophysics. The CCDs are fabricated on
high-resistivity substrates and are typically 200–300 μm thick for improved near-infrared response. The primary
research and development areas include methods to reduce read noise, increase quantum efficiency and readout
speed, and the development of fabrication methods for the efficient production of CCDs for large focal planes.
In terms of noise reduction, we will describe technology developments with our industrial partner Teledyne
DALSA Semiconductor to develop a buried-contact technology for reduced floating-diffusion capacitance, as well
as efforts to develop ”skipper” CCDs with sub-electron noise utilizing non-destructive readout amplifiers allowing
for multiple sampling of the charge packets. Improvements in quantum efficiency in the near-infrared utilizing
ultra-high resistivity substrates that allow full depletion of 500 μm and thicker substrates will be described, as
well as studies to improve the blue and UV sensitivity by investigating the limits on the thickness of the back-side
ohmic contact layer used in the LBNL technology. Improvements in readout speed by increasing the number of
readout ports will be described, including work on high frame-rate CCDs for x-ray synchrotrons with as many as
192 amplifiers per CCD. Finally, we will describe improvements in fabrication methods, developed in the course
of producing over 100 science-grade 2k × 4k CCDs for the Dark Energy Survey Camera.
We describe charge-coupled device (CCD) development activities at the Lawrence Berkeley National Laboratory (LBNL). Back-illuminated CCDs fabricated on 200-300 μm thick, fully depleted, high-resistivity silicon substrates are produced in partnership with a commercial CCD foundry. The CCDs are fully depleted by the application of a substrate bias voltage. Spatial resolution considerations require operation of thick, fully depleted CCDs at high substrate bias voltages. We have developed CCDs that are compatible with substrate bias voltages of at least 200V. This improves spatial resolution for a given thickness, and allows for full depletion of thicker CCDs than previously considered. We have demonstrated full depletion of 650-675 μm thick CCDs, with potential applications in direct x-ray detection. In this work we discuss the issues related to high-voltage operation of fully depleted CCDs, as well as experimental results on high-voltage-compatible CCDs.
The usual QE measurement heavily relies on a calibrated photodiode (PD) and the knowledge of the CCD's gain. Either can introduce significant systematic errors. But 1-R ≥QE, where R is the reflectivity. Over a significant wavelength range, 1-R = QE. An unconventional reflectometer has been developed to make this measurement. R is measured in two steps, using light from the lateral monochromator port via an optical fiber. The beam intensity is measured directly with a PD, then both the PD and CCD are moved so that the optical path length is unchanged and the light reflects once from the CCD; the PD current ratio is R. Unlike the traditional VW scheme this approach makes only one reflection from the CCD surface. Since the reflectivity of the LBNL CCDs might be as low as 2% this increases the signal to noise ratio dramatically. The goal is a 1% accuracy. We obtain good agreement between 1 - R and the direct QE results.
Instrumentation was developed in 2004 and 2005 to measure the quantum efficiency of the Lawrence Berkeley National Lab (LBNL) total-depletion CCD's, intended for astronomy and space applications. This paper describes the basic instrument. Although it is conventional even to the parts list, there are important innovations. A xenon arc light source was chosen for its high blue/UV and low red/IR output as compared with a tungsten light. Intensity stabilization has been difficult, but since only flux ratios matter this is not critical. Between the light source and an Oriel MS257 monochromator are a shutter and two filter wheels. High-bandpass and low-bandpass filter pairs isolate the 150-nm wide bands appropriate to the wavelength, thus minimizing scattered light and providing order blocking. Light from the auxiliary port enters a 20-inch optical sphere, and the 4-inch output port is at right angles to the input port. An 80 cm drift space produces near-uniform illumination on the CCD. Next to the cold CCD inside the horizontal dewar is a calibrated reference photodiode which is regulated to the PD calibration temperature, 25° C. The ratio of the CCD and in-dewar reference PD signals provides the QE measurement. Additional cross-calibration to a PD on the integrating sphere permits lower-intensity exposures.
Michael Sholl, Michael Lampton, Greg Aldering, W. Althouse, R. Amanullah, James Annis, Pierre Astier, Charles Baltay, E. Barrelet, Stephane Basa, Christopher Bebek, Lars Bergstrom, Gary Bernstein, Manfred Bester, Bruce Bigelow, Roger Blandford, Ralph Bohlin, Alain Bonissent, Charles Bower, Mark Brown, Myron Campbell, William Carithers, Eugene Commins, W. Craig, C. Day, F. DeJongh, Susana Deustua, T. Diehl, S. Dodelson, Anne Ealet, Richard Ellis, W. Emmet, D. Fouchez, Josh Frieman, Andrew Fruchter, D. Gerdes, L. Gladney, Gerson Goldhaber, Ariel Goobar, Donald Groom, Henry Heetderks, M. Hoff, Stephen Holland, M. Huffer, L. Hui, Dragan Huterer, B. Jain, Patrick Jelinsky, Armin Karcher, Steven Kahn, Steven Kent, Alex Kim, William Kolbe, B. Krieger, G. Kushner, N. Kuznetsova, Robin Lafever, J. Lamoureux, Olivier Le Fevre, Michael Levi, P. Limon, Huan Lin, Eric Linder, Stewart Loken, W. Lorenzon, Roger Malina, J. Marriner, P. Marshall, R. Massey, Alain Mazure, Timothy McKay, Shawn McKee, Ramon Miquel, Nicholas Morgan, E. Mörtsell, Nick Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nick Palaio, David Pankow, John Peoples, Saul Perlmutter, Eric Prieto, David Rabinowitz, Alexandre Refregier, Jason Rhodes, Natalie Roe, D. Rusin, V. Scarpine, Michael Schubnell, Gérard Smadja, Roger Smith, George Smoot, Jeffrey Snyder, Anthony Spadafora, A. Stebbins, Christopher Stoughton, Andrew Szymkowiak, Gregory Tarlé, Keith Taylor, A. Tilquin, Andrew Tomasch, Douglas Tucker, D. Vincent, Henrik von der Lippe, Jean-Pierre Walder, Guobin Wang, W. Wester
Mission requirements, the baseline design, and optical systems budgets for the SuperNova/Acceleration Probe (SNAP) telescope are presented. SNAP is a proposed space-based experiment designed to study dark energy and alternate explanations of the acceleration of the universe’s expansion by performing a series of complementary systematics-controlled astrophysical measurements. The goals of the mission are a Type Ia supernova Hubble diagram and a wide-field weak gravitational lensing survey. A 2m widefield three-mirror telescope feeds a focal plane consisting of 36 CCDs and 36 HgCdTe detectors and a high-efficiency, low resolution integral field spectrograph. Details of the maturing optical system, with emphasis on structural stability during terrestrial testing as well as expected environments during operations at L2 are discussed. The overall stray light mitigation system, including illuminated surfaces and visible objects are also presented.
Anne Ealet, Eric Prieto, Alain Bonissent, Roger Malina, Gérard Smadja, A. Tilquin, Gary Bernstein, Stephane Basa, D. Fouchez, Olivier Le Fevre, Alain Mazure, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, Manfred Bester, Roger Blandford, Ralph Bohlin, Charles Bower, Mark Brown, Myron Campbell, William Carithers, Eugene Commins, W. Craig, C. Day, F. DeJongh, Susana Deustua, H. Diehl, S. Dodelson, Richard Ellis, M. Emmet, Josh Frieman, Andrew Fruchter, D. Gerdes, L. Gladney, Gerson Goldhaber, Ariel Goobar, Donald Groom, Henry Heetderks, M. Hoff, Stephen Holland, M. Huffer, L. Hui, Dragan Huterer, B. Jain, Patrick Jelinsky, Armin Karcher, Steven Kent, Steven Kahn, Alex Kim, William Kolbe, B. Krieger, G. Kushner, N. Kuznetsova, Robin Lafever, J. Lamoureux, Michael Lampton, Michael Levi, P. Limon, Huan Lin, Eric Linder, Stewart Loken, W. Lorenzon, J. Marriner, P. Marshall, R. Massey, Timothy McKay, Shawn McKee, Ramon Miquel, Nicholas Morgan, E. Mörtsell, Nick Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nick Palaio, David Pankow, John Peoples, Saul Perlmutter, David Rabinowitz, Alexandre Refregier, Jason Rhodes, Natalie Roe, D. Rusin, V. Scarpine, Michael Schubnell, Michael Sholl, Roger Smith, George Smoot, Jeffrey Snyder, Anthony Spadafora, A. Stebbins, Christopher Stoughton, Andrew Szymkowiak, Gregory Tarlé, Keith Taylor, Andrew Tomasch, Douglas Tucker, Henrik von der Lippe, D. Vincent, Jean-Pierre Walder, Guobin Wang, W. Wester
A well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Iz supernovae and to standardize the magnitude of each candidate by determining explosion parameters. The spectrograph is also a key element for the calibration of the science mission. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have high efficiency and low spectral resolution (R~100), constant through the wavelength range (0.35-1.7μm), adapted to the scientific goals of the mission.
The status of CCD development efforts at Lawrence Berkeley National
Laboratory is reviewed. Fabrication technologies for the production
of back-illuminated, fully depleted CCD's on 150 mm diameter wafers
are described. In addition, preliminary performance results for
high-voltage compatible CCD's, including a 3512 x 3512, 10.5 μm
pixel CCD for the proposed SuperNova Acceleration Probe project, are presented.
Michael Lampton, Michael Sholl, Michael Krim, R. Besuner, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, Charles Baltay, E. Barrelet, Stephane Basa, Christopher Bebek, John Bercovitz, Lars Bergstrom, Gary Berstein, Manfred Bester, Ralph Bohlin, Alain Bonissent, Charles Bower, Myron Campbell, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, William Emmett, Mikael Eriksson, D. Fouchez, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Henry Heetderks, Stephen Holland, Dragan Huterer, William Johnston, Richard Kadel, Armin Karcher, Alex Kim, William Kolbe, Robin Lafever, J. Lamoureux, Oliver LeFevre, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, Alain Mazure, Timothy McKay, Shawn McKee, Ramon Miquel, Nicholas Morgan, E. Mortsell, Nick Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nick Palaio, David Pankow, Saul Perlmutter, Eric Prieto, David Rabinowitz, Alexandre Refregier, Jason Rhodes, Natalie Roe, Michael Schubnell, G. Smadja, R. Smith, George Smoot, Jeffrey Snyder, Anthony Spadafora, Andrew Szymkowiak, Gregory Tarle, Keith Taylor, A. Tilquin, Andrew Tomasch, D. Vincent, Henrik von der Lippe, Jean-Pierre Walder, Guobin Wang
We present the baseline telescope design for the telescope for the SuperNova/Acceleration Probe (SNAP) space mission. SNAP’s purpose is to determine expansion history of the Universe by measuring the redshifts, magnitudes, and spectral classifications of thousands of supernovae with unprecedented accuracy. Discovering and measuring these supernovae demand both a wide optical field and a high sensitivity throughout the visible and near IR wavebands. We have adopted the annular-field three-mirror anastigmat (TMA) telescope configuration, whose classical aberrations (including chromatic) are zero. We show a preliminary optmechanical design that includes important features for stray light control and on-orbit adjustment and alignment of the optics. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of the design tasks being carried out during the current SNAP research and development phase.
An overview of CCD development efforts at Lawrence Berkeley National
Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.
Christopher Bebek, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, Charles Baltay, E. Barrelet, Stephane Basa, John Bercovitz, Lars Bergstrom, Gary Berstein, Manfred Bester, Ralph Bohlin, Alain Bonissent, Charles Bower, Myron Campbell, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, William Emmett, Mikael Eriksson, D. Fouchez, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Henry Heetderks, Stephen Holland, Dragan Huterer, William Johnston, Richard Kadel, Armin Karcher, Alex Kim, William Kolbe, Robin Lafever, J. Lamoureux, Michael Lampton, Oliver LeFevre, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, Alain Mazure, Timothy McKay, Shawn McKee, Ramon Miquel, Nicholas Morgan, E. Mortsell, N. Mostek, Stuart Mufson, J. Musser, Natalie Roe, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, Eric Prieto, David Rabinowitz, Alexandre Refregier, Jason Rhodes, Michael Schubnell, Michael Sholl, G. Smadja, R. Smith, George Smoot, Jeffrey Snyder, Anthony Spadafora, Andrew Szymkowiak, Gregory Tarle, Keith Taylor, A. Tilquin, Andrew Tomasch, D. Vincent, Henrik von der Lippe, Jean-Pierre Walder, Guobin Wang
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.
Anne Ealet, Eric Prieto, Alain Bonissent, Roger Malina, G. Bernstein, Stephane Basa, Oliver LeFevre, Alain Mazure, Christophe Bonneville, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, John Bercovitz, Manfred Bester, C. Bower, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, R. Ellis, Mikael Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, Alex Kim, William Kolbe, B. Krieger, R. Lafever, J. Lamoureux, Michael Lampton, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, R. Massey, Timothy McKay, Shawn McKee, Ramon Miquel, E. Moertsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Alexandre Refregier, J. Rhodes, Kem Robinson, N. Roe, Michael Sholl, Michael Schubnell, G. Smadja, George Smoot, Anthony Spadafora, Gregory Tarle, Andrew Tomasch, H. von der Lippe, D. Vincent, J.-P. Walder, Guobin Wang
A well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Ia supernovae and to standardize the magnitude of each candidate by determining explosion parameters. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have very high efficiency and low spectral resolution (R~100), constant through the wavelength range (0.35-1.7μm), adapted to the scientific goals of the mission.
Gregory Tarle, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, John Bercovitz, Gary Bernstein, Manfred Bester, Alain Bonissent, C. Bower, Mark Brown, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, Mikael Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, Alex Kim, William Kolbe, B. Krieger, R. Lafever, J. Lamoureux, Michael Lampton, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, R. Massey, Ramon Miquel, Timothy McKay, Shawn McKee, E. Moertsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Eric Prieto, Alexandre Refregier, Jason Rhodes, Kem Robinson, N. Roe, Michael Schubnell, Michael Sholl, G. Smadja, George Smoot, Anthony Spadafora, Andrew Tomasch, D. Vincent, H. von der Lippe, J.-P. Walder, Guobin Wang
The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 μm, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 μm, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.
Michael Lampton, Christopher Bebek, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Lars Bergstrom, John Bercovitz, Gary Bernstein, Manfred Bester, Alain Bonissent, C. Bower, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, Mikael Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, Alex Kim, William Kolbe, B. Krieger, R. Lafever, J. Lamoureux, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, R. Massey, Timothy McKay, Steven McKee, Ramon Miquel, E. Moertsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Eric Prieto, Alexandre Refregier, J. Rhodes, Kem Robinson, N. Roe, Michael Sholl, Michael Schubnell, G. Smadja, George Smoot, Anthony Spadafora, Gregory Tarle, Andrew Tomasch, H. von der Lippe, D. Vincent, J.-P. Walder, Guobin Wang
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation -- visible and near-infrared imagers, spectrograph, and star guiders -- share one common focal plane.
Alex Kim, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, J. Bercovitz, Gary Bernstein, M. Bester, A. Bonissent, C. Bower, William Carithers, Eugene Commins, C. Day, Susana Deustua, R. DiGennaro, A. Ealet, Richard Ellis, M. Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, William Kolbe, B. Krieger, Robin Lafever, J. Lamoureux, Michael Lampton, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, R. Massey, Timothy McKay, Shawn McKee, Ramon Miquel, E. Mortsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Eric Prieto, Alexandre Refregier, Jason Rhodes, Kem Robinson, N. Roe, Michael Sholl, Michael Schubnell, G. Smadja, George Smoot, Anthony Spadafora, Gregory Tarle, Andrew Tomasch, H. von der Lippe, D. Vincent, J.-P. Walder, Guobin Wang
The Supernova / Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/near-infrared (NIR) imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. For 16 months each, two 7.5 square-degree fields will be observed every four days to a magnitude depth of AB=27.7 in each of the SNAP filters, spanning 3500-17000Å. Co-adding images over all epochs will give AB=30.3 per filter. In addition, a 300 square-degree field will be surveyed to AB=28 per filter, with no repeated temporal sampling. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data will support a broad range of auxiliary science programs.
Michael Lampton, Carl Akerlof, Greg Aldering, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, John Bercovitz, G. Bernstein, Manfred Bester, Alain Bonissent, C. Bower, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, Mikael Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, Alex Kim, William Kolbe, B. Krieger, R. Lafever, J. Lamoureux, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, R. Massey, Timothy McKay, Shawn McKee, Ramon Miquel, E. Mortsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Eric Prieto, Alexandre Refregier, J. Rhodes, Kem Robinson, N. Roe, Michael Sholl, Michael Schubnell, G. Smadja, George Smoot, A. Spadafora, Gregory Tarle, Andrew Tomasch, H. von der Lippe, R. Vincent, J.-P. Walder, Guobin Wang
The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.
Greg Aldering, Carl Akerlof, R. Amanullah, Pierre Astier, E. Barrelet, Christopher Bebek, Lars Bergstrom, John Bercovitz, Gary Bernstein, Manfred Bester, Alain Bonissent, Charles Bower, William Carithers, Eugene Commins, C. Day, Susana Deustua, Richard DiGennaro, Anne Ealet, Richard Ellis, Mikael Eriksson, Andrew Fruchter, Jean-Francois Genat, Gerson Goldhaber, Ariel Goobar, Donald Groom, Stewart Harris, Peter Harvey, Henry Heetderks, Steven Holland, Dragan Huterer, Armin Karcher, Alex Kim, William Kolbe, B. Krieger, R. Lafever, James Lamoreux, Michael Lampton, Michael Levi, Daniel Levin, Eric Linder, Stewart Loken, Roger Malina, R. Massey, Timothy McKay, Shawn McKee, Ramon Miquel, E. Moertsell, N. Mostek, Stuart Mufson, J. Musser, Peter Nugent, Hakeem Oluseyi, Reynald Pain, Nicholas Palaio, David Pankow, Saul Perlmutter, R. Pratt, Eric Prieto, Alexandre Refregier, J. Rhodes, Kem Robinson, N. Roe, Michael Sholl, Michael Schubnell, G. Smadja, George Smoot, Anthony Spadafora, Gregory Tarle, Andrew Tomasch, H. von der Lippe, D. Vincent, J.-P. Walder, Guobin Wang
The SuperNova / Acceleration Probe (SNAP) is a space-based experiment to measure the expansion history of the Universe and study both its dark energy and the dark matter. The experiment is motivated by the startling discovery that the expansion of the Universe is accelerating. A 0.7~square-degree imager comprised of 36 large format fully-depleted n-type CCD's sharing a focal plane with 36 HgCdTe detectors forms the heart of SNAP, allowing discovery and lightcurve measurements simultaneously for many supernovae. The imager and a high-efficiency low-resolution integral field spectrograph are coupled to a 2-m three mirror anastigmat wide-field telescope, which will be placed in a high-earth orbit. The SNAP mission can obtain high-signal-to-noise calibrated light-curves and spectra for over 2000 Type Ia supernovae at redshifts between z = 0.1 and 1.7. The resulting data set can not only determine the amount of dark energy with high precision, but test the nature of the dark energy by examining its equation of state. In particular, dark energy due to a cosmological constant can be differentiated from alternatives such as "quintessence", by measuring the dark energy's equation of state to an accuracy of ± 0.05, and by studying its time dependence.
A new type of p-channel CCD constructed on high-resistivity n-type silicon was exposed to 12 MeV protons at doses up to 1 X 1011 protons/cm2. The charge transfer efficiency was measured as a function of radiation dose and temperature. We previously reported that these CCDs are significantly more tolerant to radiation damage than conventional n-channel devices. In the work reported here, we used pocket pumping techniques and charge transfer efficiency measurements to determine the identity and concentrations of radiation induced traps present in the damaged devices.
The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. 'Cosmic rays' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons ('worms'). Beta emitters inside the dewar, for example high-potassium glasses such as BK7 , also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by- products of 40K decay and the U and Th decay chains; these elements commonly appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to have significantly lower rates than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude fights does not appear to be a problem. Our conclusion are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).
We review recent progress in the field, using a s a framework a partial list of present limitations and problems: CCD and mosaic size, packing fraction in mosaics, red response and fringing, and intrinsic point-spread function due to lateral charge diffusion. Related topics such as orthogonal-transfer CCDs and the special requirements of adaptive-optics wavefront sensor are also discussed. Only cursory attention is given to other relevant issues, such as readout speed and anti-blooming techniques.
We have developed an optical approach for modeling the quantum efficiency (QE) of back-illuminated CCD optical imagers for astronomy. Beyond its simplicity, it has the advantage of providing a complete fringing description for a real system. Standard thin-film calculations are extended by (a) considering the CCD itself as a thin film, and (b) treating the refractive index as complex. The QE is approximated as the fraction of the light neither transmitted nor reflected, which basically says that all absorbed photons produce e-h pairs and each photoproduced e or h is collected. Near-surface effects relevant to blue response must still be treated by standard semiconductor modeling methods. A simple analytic expression describes the QE of a CCD without antireflective (AR) coatings. With AR coatings the system is more easily described by transfer matrix methods. A two-layer AR coating is tuned to give a reasonable description of standard thinned CCDs, while the measured QE of prototype LBNL totally depleted thick CCDs is well described with no adjustable parameters. Application to the new LBNL CCDs indicates that these device swill have QE > 70 percent at (lambda) equals 1000 nm and negligible fringing in optical system faster than approximately f4.0.
In this paper we present new results from the characterization of a fully depleted CCD on high resistivity silicon. The CCD was fabricated at Lawrence Berkeley National Laboratory on a 10-12 K(Omega) -cm n-type silicon substrate. The CCD is a 200 by 200 15-micrometers square pixel array. The high resistivity of the starting material makes it possible to deplete the entire 300 micrometers thick substrate. This results in improved red and near IR response compared to a standard CCD. Because the substrate is fully depleted, thinning of the CCD is not required for backside illumination, and the result presented here were obtained with a backside illuminated device. In this paper we present measured quantum efficiency as a function of temperature, and we describe a novel clocking scheme to measure serial charge transfer efficiency. We demonstrate an industrial application in which the CCD is more than an order of magnitude more sensitive than a commercial camera using a standard CCD.
Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage current. We have also observed the effects of clocking waveform shapes on spurious charge generation. While these new CCDs promise to be a major advance in CD technology, they too have limitations such as charge spreading and cosmic-ray effects. These limitations have been characterized and are presented. Examples of astronomical observations obtained with the backside CCD on the 1-meter reflector at Lick Observatory are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.