In this work, we present preliminary results of the fabrication and characterization of 1D Fabry–Perot microcavity realized on Yb3+ activated SiO2-SnO2 glass-ceramic (SiO2-SnO2:Yb3+). A radiofrequency-sputtering/sol-gel hybrid deposition process was developed for the microcavity fabrication. The fabrication included (i) radiofrequency-sputtering (rf-sputtering) of SiO2/HfO2 Bragg reflectors and (ii) sol-gel deposition of the active SiO2-SnO2:Yb3+ defect layer. A good control and enhancement of the spontaneous emission for Yb3+ luminescence sensitized by SnO2 nanocrystals was achieved exploiting microcavity properties. Such results are valuable for development of low-threshold rare-earth-based coherent light sources, pumped by broadband UV diodes.
We present the radio frequency sputtering fabrication protocols for the fabrication on flexible polymeric substrates of glass-based 1D photonic crystals and erbium activated planar waveguides. Various characterization techniques, such as atomic force microscopy and optical microscopy, are employed to put in evidence the good adhesion of the glass coating on the polymeric substrates. Transmittance measurements are performed on the multilayer structure and indicate that there are no differences between the samples deposited on the polymeric and SiO2 substrates, even after bending. Prism coupling technique is used to measure the optical parameter of the planar waveguide fabricated on flexible substrates. The 4I13/2 → 4I15/2 emission band, detected upon TE0 mode excitation at 514.5 nm, exhibits the spectral shape characteristic of Er3+ ions embedded in a crystalline environment.
Looking at the literature of the last years is evident that glass-based rare-earth-activated optical structures represent the technological pillar of a huge of photonic applications covering Health and Biology, Structural Engineering, Environment Monitoring Systems and Quantum Technologies. Among different glass-based systems, a strategic place is assigned to transparent glass-ceramics, nanocomposite materials, which offer specific characteristics of capital importance in photonics. These two-phase materials are constituted by nanocrystals or nanoparticles dispersed in a glassy matrix. The respective composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. The key to make the spectroscopic properties of the glass-ceramics very attractive for photonic applications is to activate the nanocrystals by luminescent species as rare earth ions. From a spectroscopic point of view the more appealing feature of glass-ceramic systems is that the presence of the crystalline environment for the rare earth ions allows high absorption and emission cross sections, reduction of the non-radiative relaxation thanks to the lower phonon cut-off energy and tailoring of the ion-ion interaction by the control of the rare earth ion partition. Although the systems have been investigated since several years, chemical and physical effects, mainly related to the synthesis and to the ions interactions, which are detrimental for the efficiency of active devices, are subject of several scientific and technological investigations. Here we focus on fabrication and assessment of glass-ceramic photonic systems based on rare earth activated SiO2-SnO2 glasses produced by sol-gel route.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.