KEYWORDS: Glasses, Solar energy, Absorption, Silicon, Data modeling, Solar cells, External quantum efficiency, Temperature metrology, Tandem solar cells, Perovskite
Perovskite/silicon tandem solar cells promise power conversion efficiencies (PCE) beyond the thermodynamic limit of single-junction devices. This potential has been unveiled via several champion devices, however, their actual outdoor performance is yet to be investigated. Here, we fabricate 25 %-efficient two-terminal (2T) monolithic perovskite/silicon tandem solar cells and test them outdoors to reveal the characteristics of these devices specifically in hot and sunny climates, which are the ideal locations to operate such efficient photovoltaic devices. In this article, we summarize our observation on the perovskite/silicon tandem solar cells under actual operational conditions and discuss the lessons we take from our interpretations.
Solution-processed metal-halide perovskite solar cells (PSCs) have received immense attention in the field of photovoltaic research due to their outstanding power conversion efficiency (PCE), which has surpassed 24% in a relative short time. Understanding carrier losses at metal halide perovskite/charge transport layer interfaces is a pre-requisite to bring the efficiency closer to the Shockley-Queisser limit. Ultrafast transient absorption spectroscopy is a vital tool to study such a processes and specifically interfacial recombination can accessed through these measurements, and further in-sights into losses associated with the open circuit voltage Voc are gained. Transient spectroscopy techniques will be used to unravel the dynamics of processes limiting the photoluminescence quantum efficiency and thus the Voc. Employing both transient photoluminescence and transient absorption techniques, enables differentiation be-tween various recombination processes. Here we study the impact of the different hole transport layers, namely, PDPP-3T, NiO and PTAA hole transport layers and reveal the charge carrier recombination. We report the direct observation of hole extraction and carrier recombination dynamics of mixed-cation lead mixed-halide perovskite layers interfacing with a polymeric hole transport layer: PDPP-3T. The dynamics of the ground state bleach of the polymer, which directly reveals the hole extraction and re-combination at the perovskite/polymer interface. The perovskite hole mobility was found to be 3.08 cm2 V-1 s-1. To gain further insight into the hole extraction dynamics, we vary the thickness of the perovskite film. We observe that the hole extraction time is slower with increasing the perovskite thickness following optical excitation from the perovskite side. Mimicking the device architecture via introducing an electron transport layer to the perovskite/PDPP-3T stack resulted in slower carrier recombination dynamics due to decreased charge carrier recombination in the perovskite.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.