The PV parameters of triple cation perovskite solar cells are studied focusing on the electro-optical properties and differences in performance at low and high temperatures. A parasitic barrier to carrier extraction at low temperatures causes a loss of performance at T < 200 K. Combined Intensity and temperature dependent measurements suggest that extraction across this parasitic interface is constrained by a combination of the binding energy of the excitons and thermionic emission. However, the performance of the device is restored at low intensity_ where the thermionic extraction rate exceeds the photocarrier generation.
KEYWORDS: Solar cells, Photovoltaics, Solar energy, Silicon, Perovskite, Manufacturing, Sustainability, Dye sensitized solar cells, Design, Energy efficiency
This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.
Metal halide perovskites are a leading contender to disrupt not only terrestrial photovoltaic (PV) markets, but also the proliferating space PV markets. This is due to their impressive power conversion efficiencies, potentially low cost, and adaptability to flexible architectures. Here we assess the stability of three perovskite systems; a mixed Pb-Sn perovskite, and two mixed cation-triple halide systems. In all cases high tolerance to proton irradiation was observed. However, in the case of the mixed Pb-Sn system, irreversible decomposition of the perovskite along with the increased prevalence of defects was observed with thermal cycling. In the case of the mixed cation triple halides remarkable stability was demonstrated, in addition to self-healing, the results of which will be described here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.