We investigated a non-contact imaging method to evaluate plethysmogram and vasomotion with a digital color camera. Monte Carlo simulation for light transport in skin tissue is used to specify a relation among the red-green-blue-values and hemoglobin contents. Applying the FFT band pass filters to each pixel of the sequential images for the total hemoglobin concentration along the time line, two-dimentional plethysmogram and vasomotion can be reconstructed. In vivo experiments with human skin before, during, and after auditory stimulation demonstrated the feasibility of the method to evaluate the activities of autonomic nervous systems.
Plethysmogram is the periodic variation in blood volume due to the cardiac pulse traveling through the body. Photo-plethysmograph (PPG) has been widely used to assess the cardiovascular system such as heart rate, blood pressure, cardiac output, vascular compliance. We have previously proposed a non-contact PPG imaging method using a digital red-green-blue camera. In the method, the Monte Carlo simulation for light transport is used to specify a relationship among the RGB-values and the concentrations of oxygenated hemoglobin (CHbO) and deoxygenated hemoglobin (CHbR). The total hemoglobin concentration (CHbT) can be calculated as a sum of CHbO and CHbR. Applying the fast Fourier transform (FFT) band pass filters to each pixel of the sequential images for CHbT along the time line, two-dimentional plethysmogram can be reconstructed. In this study, we further extend the method to imaging the arterial oxygen saturation (SaO2). The PPG signals for both CHbO and CHbR are extracted by the FFT band pass filter and the pulse wave amplitudes (PWAs) of CHbO and CHbR are calculated. We assume that the PWA for CHbO and that for CHbR are decreased and increased as SaO2 is decreased. The ratio of PWA for CHbO and that for CHbR are associated to the reference value of SaO2 measured by a commercially available pulse oximeter, which provide an empirical formula to estimate SaO2 from the PPG signal at each pixel of RGB image. In vivo animal experiments with rats during varying the fraction of inspired oxygen (FiO2) demonstrated the feasibility of the proposed method.
KEYWORDS: Skin, Nervous system, Digital cameras, Cameras, RGB color model, Monte Carlo methods, Blood, Blood vessels, Tissue optics, Fourier transforms, Curium, In vivo imaging, Chromophores, Digital imaging
A non-contact imaging method with a digital RGB camera is proposed to evaluate plethysmogram and spontaneous lowfrequency oscillation. In vivo experiments with human skin during mental stress induced by the Stroop color-word test demonstrated the feasibility of the method to evaluate the activities of autonomic nervous systems.
To perform a contactless plethysmographic imaging, we investigated a method to estimate the concentrations of
oxygenated and deoxygenated blood in human skin tissue from RGB images, based on the Monte Carlo simulation.
We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P<0.001) for the arterial inflow, 0.77 (P<0.01) for the vascular resistance, and 0.77 (P<0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin.
In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.
The arterial inflow and the venous capacitance in the human skin were visualized from the increase rate and the change
of total blood concentration derived from RGB images during upper limb occlusion at 50 mmHg-pressure.
A method is proposed for visualizing the depth and thickness distribution of a local blood region in skin tissue using diffuse reflectance images at three isosbestic wavelengths of hemoglobin: 420, 585, and 800 nm. Monte Carlo simulation of light transport specifies a relation among optical densities, depth, and thickness of the region under given concentrations of melanin in epidermis and blood in dermis. Experiments with tissue-like agar gel phantoms indicate that a simple circular blood region embedded in scattering media can be visualized with errors of 6% for the depth and 22% for the thickness to the given values. In-vivo measurements on human veins demonstrate that results from the proposed method agree within errors of 30 and 19% for the depth and thickness, respectively, with values obtained from the same veins by the conventional ultrasound technique. Numerical investigation with the Monte Carlo simulation of light transport in the skin tissue is also performed to discuss effects of deviation in scattering coefficients of skin tissue and absorption coefficients of the local blood region from the typical values of the results. The depth of the local blood region is over- or underestimated as the scattering coefficients of epidermis and dermis decrease or increase, respectively, while the thickness of the region agrees well with the given values below 1.2 mm. Decreases or increases of hematocrit value give over- or underestimation of the thickness, but they have almost no influence on the depth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.