We develop H2 gas sensors based on CMOS compatible 20% ScAlN-based pyroelectric detectors fabricated in-house. Leveraging on the high thermal conductivity of H2, ScAlN-based pyroelectric detector is used in the H2 sensor for H2 to conduct away thermal energy received by the detector, resulting in a drop in signal received by the detector, thereby leading to different voltage signals measured for different H2 gas concentrations. The higher the H2 gas concentration, the lower the voltage measured as more thermal energy is conducted away from the detector. We successfully demonstrate H2 gas sensing with the signal received by the pyroelectric detector at concentration ranging from 400 ppm to 1% H2 concentration. The gases are cycled at 2-minute intervals between different concentrations of H2, using N2 as the reference gas. Our measurements show H2 sensing down to 400 ppm gas concentration with response time ranging from ~3-7 s. In addition, a linear relationship is also observed between the measured output signal from the H2 gas sensor and the H2 gas concentration flowing across the pyroelectric detector. The results show promise in using CMOS compatible 20% ScAlN-based pyroelectric detectors for development of thermal conductivity H2 gas sensor in H2 leakage sensing to increase confidence towards adoption of H2 as a clean energy as we move towards a sustainable society.
Germanium-on-Silicon (Ge-on-Si) platform has been demonstrated as an excellent candidate for mid-infrared photonics applications, including on-chip mid-infrared spectroscopy and biochemical sensing. However, this platform is often saddled by high propagation loss due to a combination of threading dislocation defects at the Ge/Si interface, absorption in the silicon for λ < 8 μm, and surface scattering due to sidewall roughness. This work investigates the effects on loss reduction through different annealing techniques on Ge-on-Si waveguides fabricated using CMOS-compatible processes. We explore the use of local laser annealing at waveguide sidewalls, whereby the fluence was varied. A non-local annealing technique in hydrogen ambient was also employed as comparison. The propagation losses for wavelengths, ranging from λ = 5 μm to λ = 11 μm, were systematically characterized by fabricating waveguide and grating coupler structures on the same chip. Cutback measurements were performed by varying the waveguide length (of the same width) from L = 1 mm to L = 4 mm. Both hydrogen and laser annealing experiments show marked reduction in the propagation loss, by up to 27% and 46% respectively. This finding paves the way for post-processing techniques to reduce propagation loss in Ge-on-Si platform, which will enable various on-chip mid-IR applications in the future.
A demonstration of an on-chip CO2 gas sensor is reported. It is constructed by the integration of a MEMS-based thermal emitter, a scandium-doped aluminum nitride (ScAlN) based pyroelectric detector, and a sensing channel built on Si substrate. The integrated sensor has a small footprint of 13mm × 3mm (L×W), achieved by the replacement of bulky bench-top mid-IR source and detectors with MEMS-based thermal emitter and ScAlN-based pyroelectric detector, with their footprints occupying 3.15 mm × 3 mm and 3.45 mm × 3 mm, respectively. In addition, the performance of the integrated sensor in detecting CO2 of various concentrations in N2 ambient is also studied. The results indicate that the pyroelectric detector responds linearly to the CO2 concentration. The integration of MEMS emitter, thermal pathway substrate, and pyroelectric detector, realized through CMOS compatible process, shows the potential for massdeployment of gas sensors in environmental sensing networks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.