MOCVD technology has widely grown compound semiconductors for various applications, like Power/RF GaN and micro-LEDs. Precise control of wafer uniformity, defect density, and run-to-run consistency is essential for optimal results and reducing COO.
High-speed rotation vertical reactors, with uniform deposition capabilities, enable a wide process window. Implementing these in a single wafer configuration enhances film uniformity through concentric temperature and flow patterns. The Propel® MOCVD 300mm single wafer reactor made 300mm semiconductor fabrication accessible to the nitride material system, critical for RF and micro-LEDs.
This presentation covers latest Propel® 300mm MOCVD single wafer reactor advancements, including uniformity, repeatability, crystal quality for GaN/Si, GaN HEMT structure characterization, and GaN on Si LED wavelength uniformity. We'll discuss recent progress in red InGaN LED performance on 6” sapphire and 8” Si wafers, highlighting how Propel® MOCVD enhances high indium composition materials with Turbodisc® single wafer reactor technology.
ZnO and N-doped ZnO thin films were grown by MOCVD on sapphire and ZnO substrates. Diethyl zinc and O2 were used as sources for Zn and O, respectively. A specially designed plasma system was employed to produce atomic N dopant for in-situ doping. Proper disk rotation speeds were found for ZnO growth on different size wafers. High crystal quality N-doped ZnO films were grown based on optimized growth conditions. Wet chemical etch of ZnO was investigated by using NH4Cl, and etch activation energy was calculated to be 463meV. Ohmic contact on N-doped ZnO film was achieved by using Ni/Au/Al multiple layers. ZnO based p-n junction has demonstrated rectification. Electroluminescence at about 384nm was obtained from ZnO based LED.
Intentionally doped n-type bulk ZnO has been grown by patented melt technique at Cermet and was used as a substrate for homo-epitaxial growth of p-type ZnO films. The n-type ZnO has a carrier concentration on the order of 1018cm-3 with a mobility of 113cm2/Vs, which is good for optical devices. Secondary ion mass spectroscopy (SIMS) profile shows a very uniform distribution of n-type dopant in the ZnO. Excellent transmission from the sharp absorption edge through the visible portion of the spectrum indicates that as grown n-type ZnO is perfect for any optical device applications. P-type ZnO thin films were successfully grown by MOCVD technique on n-type ZnO substrate to form ZnO based p-n junction structure. Cadmium and magnesium doped ZnO films were also grown by MOCVD and resulted in tunable bad gap energy of ZnO based alloy. Ohmic contact layer on n-type ZnO was formed by using Ti/Au and on p-type ZnO was formed by using Ni/Au. The current-voltage (I-V) characteristics of the ZnO based p-n junction exhibited rectification when reverse biased with a breakdown voltage of 10 V and turn-on voltage of 3.3 V. Post anneal of p-type ZnO films showed big improvement on the I-V characteristics. Electroluminescence (EL) spectra obtained from devices driven to 40mA are dominated by a peak at 384nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.