The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers.
Measurements of B-mode polarization in the cosmic microwave background (CMB) sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies.
BICEP Array (BA) is the latest generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, BA will consist of four small-aperture receivers, spanning six different frequency bands. The BA4 receiver is designed to characterize Galactic dust at 220/270 GHz. This receiver is currently undergoing commissioning at Stanford and is scheduled to deploy to the South Pole during the 2024-2025 austral summer. Here, we will provide an overview of this high frequency receiver, discussing the integration status and test results as it is being commissioned.
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon-noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.
The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than approximately 800 functioning detector pairs of the BICEP3 experiment, out of a total of approximately 1000. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of approximately 0.5° . After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence.
Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments.
This conference presentation was prepared for the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5× expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope.
The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.
A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic
microwave background (CMB) using a series of telescopes which will cover angular scales between 1 arcminute
and tens of degrees, contain over 40,000 detectors, and sample frequencies between 27 and 270 GHz. SO will
consist of a six-meter-aperture telescope coupled to over 20,000 detectors along with an array of half-meter
aperture refractive cameras, coupled to an additional 20,000+ detectors. The unique combination of large and
small apertures in a single CMB observatory, which will be located in the Atacama Desert at an altitude of
5190 m, will allow us to sample a wide range of angular scales over a common survey area. SO will measure
fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect,
constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. The complex
set of technical and science requirements for this experiment has led to innovative instrumentation solutions
which we will discuss. The large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter
and over 2 m long, creating a number of interesting technical challenges. Concurrently, we are designing an array
of half-meter-aperture cryogenic cameras which also have compelling design challenges. We will give an overview
of the drivers for and designs of the SO telescopes and the cryogenic cameras that will house the cold optical
components and detector arrays.
The Simons Observatory (SO) will observe the temperature and polarization anisotropies of the cosmic microwave background (CMB) over a wide range of frequencies (27 to 270 GHz) and angular scales by using both small (∼0.5 m) and large (∼6 m) aperture telescopes. The SO small aperture telescopes will target degree angular scales where the primordial B-mode polarization signal is expected to peak. The incoming polarization signal of the small aperture telescopes will be modulated by a cryogenic, continuously-rotating half-wave plate (CRHWP) to mitigate systematic effects arising from slowly varying noise and detector pair-differencing. In this paper, we present an assessment of some systematic effects arising from using a CRHWP in the SO small aperture systems. We focus on systematic effects associated with structural properties of the HWP and effects arising when operating a HWP, including the amplitude of the HWP synchronous signal (HWPSS), and I → P (intensity to polarization) leakage that arises from detector non-linearity in the presence of a large HWPSS. We demonstrate our ability to simulate the impact of the aforementioned systematic effects in the time domain. This important step will inform mitigation strategies and design decisions to ensure that SO will meet its science goals.
New telescopes are being built to measure the Cosmic Microwave Background (CMB) with unprecedented sensitivity, including Simons Observatory (SO), CCAT-prime, the BICEP Array, SPT-3G, and CMB Stage-4. We present observing strategies for telescopes located in Chile that are informed by the tools used to develop recent Atacama Cosmology Telescope (ACT) and Polarbear surveys. As with ACT and Polarbear, these strategies are composed of scans that sweep in azimuth at constant elevation.
We explore observing strategies for both small (0.42 m) aperture telescopes (SAT) and a large (6 m) aperture telescope (LAT). We study strategies focused on small sky areas to search for inflationary gravitational waves as well as strategies spanning roughly half the low-foreground sky to constrain the effective number of relativistic species and measure the sum of neutrino masses via the gravitational lensing signal due to large scale structure. We present these strategies specifically considering the telescope hardware and science goals of the SO, located at 23° South latitude, 67.8° West longitude.
Observations close to the Sun and the Moon can introduce additional systematics by applying additional power to the instrument through telescope sidelobes. Significant side lobe contamination in the data can occur even at tens of degrees or more from bright sources. Therefore, we present several strategies that implement Sun and Moon avoidance constraints into the telescope scheduling.
Scan strategies can also be a powerful tool to diagnose and mitigate instrumental systematics either by using multiple scans to average down systematics or by providing null tests to diagnose problems. We discuss methods for quantifying the ability of an observation strategy to achieve this.
Strategies for resolving conflicts between simultaneously visible fields are discussed. We focus on maximizing telescope time spent on science observations. It will also be necessary to schedule calibration measurements, however that is beyond the scope of this work. The outputs of this study are algorithms that can generate specific schedule commands for the Simons Observatory instruments.
POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID).
The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)).
We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.
The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
The Simons Observatory (SO) is a set of cosmic microwave background instruments that will be deployed in the Atacama Desert in Chile. The key science goals include setting new constraints on cosmic inflation, measuring large scale structure with gravitational lensing, and constraining neutrino masses. Meeting these science goals with SO requires high sensitivity and improved calibration techniques. In this paper, we highlight a few of the most important instrument calibrations, including spectral response, gain stability, and polarization angle calibrations. We present their requirements for SO and experimental techniques that can be employed to reach those requirements.
In this proceeding, we present studies of instrumental systematic effects for the Simons Obsevatory (SO) that are associated with the detector system and its interaction with the full SO experimental systems. SO will measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies over a wide range of angular scales in six bands with bandcenters spanning from 27 GHz to 270 GHz. We explore effects including intensity-to-polarization leakage due to coupling optics, bolometer nonlinearity, uncalibrated gain variations of bolometers, and readout crosstalk. We model the level of signal contamination, discuss proposed mitigation schemes, and present instrument requirements to inform the design of SO and future CMB projects.
Y. Inoue, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dünner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, N. Whitehorn, A. Zahn, O. Zahn
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♦, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 ≤ ℓ ≤ 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of
3.2 μK·arcmin. including the ongoing studies.
N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, L. Steinmetz, R. Stompor, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, A. Zahn, O. Zahn
The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers
onto a 4-degree field of view that scans the sky at ~ 1 degree per second. We find that a 500-mm-diameter
ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2.
We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
The Simons Array is an expansion of the POLARBEAR cosmic microwave background (CMB) polarization experiment currently observing from the Atacama Desert in Northern Chile. This expansion will create an array of three 3.5m telescopes each coupled to a multichroic bolometric receiver. The Simons Array will have the sensitivity to produce a ≥ 5σ detection of inationary gravitational waves with a tensor-to-scalar ratio r ≥ 0:01, detect the known minimum 58 meV sum of the neutrino masses with 3σ confidence when combined with a next-generation baryon acoustic oscillation measurement, and make a lensing map of large-scale structure over the 80% of the sky available from its Chilean site. These goals require high sensitivity and the ability to extract the CMB signal from contaminating astrophysical foregrounds; these requirements are met by coupling the three high-throughput telescopes to novel multichroic lenslet-coupled pixels each measuring CMB photons in both linear polarization states over multiple spectral bands. We present the status of this instrument already under construction, and an analysis of its capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.