KEYWORDS: Image segmentation, Breast, Digital mammography, Breast cancer, Tissues, Convolutional neural networks, Radiology, Data modeling, Cancer, Algorithm development
Digital mammography (DM) has been considered as the primary modality for breast cancer screening. The relative amount of breast fibroglandular tissue, referred to as percent breast density (PD), has been considered as an important factor associated with breast cancer. We have developed and tested a robust method to accurately segment the pectoral muscle and the breast area using a deep learning approach. We use a U-Net architecture with a ResNet decoder to increase the depth of features. The architecture is trained using 555 DM images and tested and validated on an independent set of 555 images. The results show that our network achieves an average and standard deviation dice coefficient of 94.86% ± 1.93%, respectively, and sensitivity of 96.31% ± 1.87%. The method present here can be considered as the first step toward the automatic estimation of PD.
In this paper, radiomic features are used to validate the textural realism of two anthropomorphic phantoms for digital mammography. One phantom was based off a computational breast model; it was 3D printed by CIRS (Computerized Imaging Reference Systems, Inc., Norfolk, VA) under license from the University of Pennsylvania. We investigate how the textural realism of this phantom compares against a phantom derived from an actual patient’s mammogram (“Rachel”, Gammex 169, Madison, WI). Images of each phantom were acquired at three kV in 1 kV increments using auto-time technique settings. Acquisitions at each technique setting were repeated twice, resulting in six images per phantom. In the raw (“FOR PROCESSING”) images, 341 features were calculated; i.e., gray-level histogram, co-occurrence, run length, fractal dimension, Gabor Wavelet, local binary pattern, Laws, and co-occurrence Laws features. Features were also calculated in a negative screening population. For each feature, the middle 95% of the clinical distribution was used to evaluate the textural realism of each phantom. A feature was considered realistic if all six measurements in the phantom were within the middle 95% of the clinical distribution. Otherwise, a feature was considered unrealistic. More features were actually found to be realistic by this definition in the CIRS phantom (305 out of 341 features or 89.44%) than in the phantom derived from a specific patient’s
Studies have shown that combining calculations of radiomic features with estimates of mammographic density results in an even better assessment of breast cancer risk than density alone. However, to ensure that risk assessment calculations are consistent across different imaging acquisition settings, it is important to identify features that are not overly sensitive to changes in these settings. In this study, digital mammography (DM) images of an anthropomorphic phantom (“Rachel”, Gammex 169, Madison, WI) were acquired at various technique settings. We varied kV and mAs, which control contrast and noise, respectively. DM images in women with negative screening exams were also analyzed. Radiomic features were calculated in the raw (“FOR PROCESSING”) DM images; i.e., grey-level histogram, co-occurrence, run length, fractal dimension, Gabor Wavelet, local binary pattern, Laws, and co-occurrence Laws features. For each feature, the range of variation across technique settings in phantom images was calculated. This range was scaled against the range of variation in the clinical distribution (specifically, the range corresponding to the middle 90% of the distribution). In order for a radiomic feature to be considered robust, this metric of imaging acquisition variation (IAV) should be as small as possible (approaching zero). An IAV threshold of 0.25 was proposed for the purpose of this study. Out of 341 features, 284 features (83%) met the threshold IAV ≤ 0.25. In conclusion, we have developed a method to identify robust radiomic features in DM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.