Monoclinic HfO2 nanoparticles (9 - 45 nm) are synthesized using a sol-gel method and optically characterized using transmission- and angle-dependent reflection spectroscopy in the mid- to far-infrared. A detailed HfO2 identification of the infrared-active phonon modes is presented; consistent with previously reported thin film values, and in excellent agreement with density functional perturbation theory calculations. An anomaly is observed in both reflection and transmission measurements, at 556 cm-1 that is not attributed to the optical phonon modes. Numerical models indicate that this measured anomaly is in the spectral region of a localized surface phonon polariton mode. The results of this work suggest that HfO2 nanoparticles could enable new mid- and far-infrared materials and devices with engineered optical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.