Significance: Recent evidence suggests that hydroxyapatite (HAP) in sub-retinal pigment epithelial (sub-RPE) deposits in aged human eyes may act to nucleate and contribute to their growth to clinically detectable size. Sub-RPE deposits such as drusen are clinical hallmarks of age-related macular degeneration (AMD), therefore enhanced and earlier detection is a clinical need. We found that tetracycline-family antibiotics, long known to stain HAP in teeth and bones, can also label the HAP in sub-RPE deposits. However, HAP-bound tetracycline fluorescence excitation and emission spectra overlap with the well-known autofluorescence of outer retinal tissues, making them difficult to resolve.
Aim: In this initial study, we sought to determine if the HAP-bound tetracyclines also exhibit enhanced fluorescence lifetimes, providing a useful difference in lifetime compared with the short lifetimes observed in vivo in the human retina by the pioneering work of Schweitzer, Zinkernagel, Hammer, and their colleagues, and thus a large enough effect size to resolve the HAP from background by fluorescence lifetime imaging.
Approach: We stained authentic HAP with tetracyclines and measured the lifetime(s) by phase fluorometry, and stained aged, fixed human cadaver retinas with drusen with selected tetracyclines and imaged them by fluorescence lifetime imaging microscopy (FLIM).
Results: We found that chlortetracycline and doxycycline exhibited substantial increase in fluorescence lifetime compared to the free antibiotics and the retinal background, and the drusen were easily resolvable from the retinal background in these specimens by FLIM.
Conclusions: These findings suggest that FLIM imaging of tetracycline (and potentially other molecules) binding to HAP could become a diagnostic tool for the development and progression of AMD.
Recently, we discovered microscopic spherules of hydroxyapatite (HAP) in aged human sub-retinal pigment epithelial (sub-RPE) deposits in the retinas of aged humans (PMID: 25605911), and developed evidence that the spherules may act to nucleate the growth of sub-RPE deposits such as drusen. Drusen are clinical hallmarks of age-related macular degeneration (AMD). We found that tetracycline-family antibiotics, long known to stain HAP in teeth and bones, also stained the HAP spherules, but in general the HAP-bound fluorescence excitation and emission spectra overlapped with the well-known autofluorescence of the RPE overlying drusen, making them difficult to resolve. However, we also found that certain tetracyclines exhibited substantial increases in fluorescence lifetime upon binding to HAP, and moreover these lifetimes were substantially greater than those previously observed (Dysli, et al., 2014) for autofluorescence in the human retina in vivo. Thus we were able to image the HAP spherules by fluorescence lifetime imaging microscopy (FLIM) in cadaveric retinas of aged humans. These findings suggest that FLIM imaging of tetracycline binding to HAP could become a diagnostic tool for the development and progression of AMD.
Zinc is an essential element for numerous cellular processes, therefore zinc homeostasis is regulated in living organisms. Fluorescent sensors have been developed as important tools to monitor the concentrations of readily exchangeable zinc in live cells. One type of biosensor uses carbonic anhydrase (CA) as the recognition element based on its tunable affinity, superior metal selectivity, and fluorescence signal from aryl sulfonamide ligands coupled to zinc binding. Here, we fuse carbonic anhydrase with a red fluorescent protein to create a series of genetically-encoded Förster resonance energy transfer-based excitation ratiometric zinc sensors that exhibit large signal increases in response to alterations in physiological-free zinc concentrations. These sensors were applied to the prokaryotic model organism Escherichia coli to quantify the readily exchangeable zinc concentration. In minimal media, E. coli BL21(DE3) cells expressing the CA sensor, exhibit a median intracellular readily exchangeable zinc concentration of 20 pM, much less than the total cellular zinc concentration of ∼0.2 mM. Furthermore, the intracellular readily exchangeable zinc concentration varies with the concentration of environmental zinc.
Hui-Hui Zeng, Rebecca Bozym, Robert Rosenthal, Gary Fiskum, Cynthia Cotto-Cumba, Nissa Westerberg, Carol Fierke, Andrea Stoddard, Michele Cramer, Christopher Frederickson, Richard Thompson
Zinc ion is of growing interest in medicine and biology generally, and especially in the ischemic brain and other tissues. We have developed ratiometric fluorescence-based biosensors for the study of zinc in these systems; the biosensors use apocarbonic anhydrase variants as recognition elements that offer high sensitivity and selectivity. We report continuous in situ, in vivo measurement of nanomolar extracellular zinc in the brain of an animal model of ischemia using a ratiometric fiber optic biosensor. We also report the development of an expressible excitation ratiometric indicator of zinc ion suitable for use in cells that exhibits picomolar sensitivity. Finally, we also report the discovery that the Zn complex of the chelator TPEN seems to be comparably apoptogenic to the free chelator itself.
We describe new methods for the study of zinc in biological specimens. Intracellular free zinc was determined at levels down to picomolar using an excitation ratiometric fluorescence-based biosensing approach using a carbonic anhydrase variant as transducer. A new fiber optic sensor suitable for in vivo use is also described using laser excitation and an emission ratiometric approach; the zinc concentration range of sensor response can be selected to fit the application.
A continuing issue in chemical oceanography and environmental monitoring is the need for frequent and continuous monitoring of analytes in complex matrices such as sea water and ground waters. Particularly for analytes at trace levels such as Cu(II) in sea water, sampling and analysis of discrete specimens is costly, slow, labor intensive, employs ship time inefficiently, and risks error by contamination. We have developed a fluorescence lifetime- based fiber optic biosensor which demonstrates real time determination of free Cu(II) in coastal waters, in situ, with a subpicomolar detection limit.
Recently, the function of zinc in the axonal boutons of hippocampal neurons has come under increased scrutiny as evidence has emerged of a putative role for this metal ion in neural damage following insults such as ischemia, blunt force trauma, and seizure. Indeed, the nonpathological role of free zinc in the brain remains cryptic after more than 40 years. We have used a biosensing approach to determine free zinc ion concentrations by fluorescence lifetime, intensity, intensity ratio, or anisotropy changes caused by binding of zinc to variants of a protein, apocarbonic anhydrase II (apo-CA). This approach permits real time measurement of zinc down to picomolar levels, with no perceptible interference from other divalent metal ions abundant in serum and tissue, such as calcium and magnesium. Recently, we used apo-CA together with a fluorescent ligand whose binding is metal-dependent to obtain the first fluorescence micrographs of zinc release from a rat hippocampus model in response to electrical stimulus. In our view, elucidation of the zinc fluxes in neural tissue ultimately requires quantitation, as in the case of calcium. Recent results will be shown.
Recently, there has been substantial interest in reducing the levels of toxic heavy metals in wastewater effluents from activities such as shipyards. Of particular interest is copper, which comprises tens of percent by weight of the hundreds of pounds of antifouling paint coating the bottom of a large vessel, but which is toxic to commercially important shellfish at sub-part per billion levels. As a result wastewater effluents must be monitored closely with sensor(s) capable of rapidly and accurately detecting excess copper in time to prevent release. We have pursued a fluorescence-based biosensing approach to obtain sub-ppb sensitivity for Cu(II) and immunity from interference from other cations abundant in sea water, such as Ca, Mg, and Sr. Our approach uses a protein, apocarbonic anhydrase II, as a very sensitive and selective ligand for Cu(II) which transduces the (reversible) binding of the metal as a change in fluorescence intensity, lifetime, or anisotropy, the first two of which may be conveniently measured through optical fiber. Thus we have been able to measure sub-ppb levels of Cu added to sea water, and to characterize the speciation of the Cu(II) to some degree, due to the presence of other ligands.
In developing fluorescence-based biosensors for rapidly determining metal ions such as zinc or copper in complex media such as sea water, serum, cerebrospinal fluid, or the interior of a cell, several issues must be considered. Among these are the selectivity, sensitivity, ease of calibration, speed of response, reversibility, stability, and the ease of immobilization onto a solid substrate. While the first three have been dealt with in the design of our transducer molecule, apocarbonic anhydrase II, the others remain to be considered. In this paper we examine the stability of the apoprotein to storage at various temperatures and pHs with a view to establishing storage conditions and lifetimes in operating environments for sensor transducers. Similarly, we immobilized a storage conditions and lifetimes in operating environments for sensor transducers. Similarly, we immobilized a fluorescent-labeled apo-CA variant on quartz to determine its sped, sensitivity, and kinetics of response.
The response time of biosensors which reversibly bind an analyte such as a metal ion is necessarily limited by the kinetics with which the biosensor transducer binds the analyte. In the case of the carbonic anhydrase-based biosensor we have developed the binding kinetics are rather slow, with the wild type human enzyme exhibiting an association rate constant ten thousand-fold slower than diffusion-controlled. By designed and combinatorial means the transducer may be mutagenized to achieve nearly diffusion-controlled association rate constants, with commensurate improvement in response. In addition, a variant of apocarbonic anhydrase has been immobilized on quartz, and is shown to response rapidly to changes in free copper ion in the picomolar range.
We have demonstrated that free metal ions such as Zn(II) can be determined by fuorescence anisotropy (polarization) using an apometalloenzyme, carbonic anhydrase II, and a fluorescent aryl sulfonamide inhibitor of the enzyme whose affinity for the enzyme is metal-dependent. We felt that attaching the fluorescent aryl sulfonamide to the protein would provide a similar response, while avoiding problems of disproportionation of the inhibitor and protein. In fact a tethered aryl sulfonamide ABD-T gave very good results: Zn(II) and Cu(II) at picomolar levels and Co(II), Cd(II), and Ni(II) at nanomolar levels can all be determined by changes in fluorescence intensity, anisotropy, and lifetime using visible excitation sources. Implications of these results are discussed.
Previously, we had shown that the zinc-dependent binding of certain fluorescent aryl sulfonamide inhibitors could be used with apo-carbonic anhydrase II to transduce the level of free zinc as a change in the fluorescence of the inhibitor. While inhibitors such as dansylamide, ABD-M, and ABD-N made possible quantitation of free zinc in the picomolar range with high selectivity, they have only modest absorbance which limits their utility. We describe here the synthesis and properties of two new probes, Dapoxyl sulfonamide and BTCS, and their use in zinc biosensing. Dapoxyl sulfonamide exhibits a dramatic increase and blue shift in its emission upon binding to holo-carbonic anhydrase II, as well as a twenty-fold increase in lifetime: it is thus well suited for quantitating free Zn(II) down to picomolar ranges. The anisotropy of BTCS increases five-fold binding to the holoprotein making this probe well suited for anisotropy-based determination of zinc.
Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.
Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.
In comparison to metal ions in aqueous solutions, there are few methods for analysis of small anions such as cyanide, cyanate, carbonate, sulfide, and nitrate. Yet such analytes are important as environmental pollutants and as reagents and byproducts of industrial processes, paper manufacture, and mining. For some time we have been developing fluorescence-based fiber optic biosensors for metal ions such as zinc, cobalt, copper, mercury, nickel and cadmium, using the unparalleled selectivity and avidity of a metalloenzyme, human carbonic anhydrase. In the cases of Cu2+, CO2+, and Ni2+, we made use of the characteristic weak d-d absorbance bands of these metals when bound in the active site of the enzyme to serve as a fluorescence energy transfer acceptor for a suitably positioned fluorescent label attached to the enzyme. For this approach the intensity and lifetime of the fluorophore reflect the degree of energy transfer, and therefore the concentration of the metal. To measure certain anions such as cyanide and cyanate, we made use of the well-known perturbation of the d-d absorbance of Co2+ when an anion inhibitor becomes bound and inhibits the enzyme. These changes in absorbance modify the overlap integral with a suitable fluorescent label, and thereby the degree of energy transfer, resulting in a perturbation of the intensity and lifetime.
Recently, we have developed a biosensor for zinc based on the very tight binding of this metal by the enzyme carbonic anhydrase, which requires Zn(II) for catalysis. We were able to transduce the binding of the metal as a change in fluorescence intensity or lifetime by use of a colored inhibitor whose metal-dependent binding permits fluorescence resonance energy transfer (Forster transfer) to occur. We have extended this concept to include other metals and other analytes which may be bound in the native (or mutant) enzyme active site with a concomitant color change; the color change is transduced as a change in energy transfer efficiency. We have also recently demonstrated a similar approach, wherein the presence of a metal ion in the binding site is transduced as a change in fluorescence anisotropy. Results in cuvettes and with fiber optic sensors are shown.
We have recently described a biosensor for zinc and other metals which is based upon fluorescence energy
transfer from a site or sites on the enzyme carbonic anhydrase to an inhibitor whose binding to the active site is largely metal-dependent. The concentration of the metal ion analyte is a simple function of the occupancy of the active site by the colored inhibitor, which is transduced as a change in intensity or lifetime of the fluorescent donor. We and others have demonstrated assays for several analytes based on energy transfer with moderate success. In this work we demonstrate by simulation and experiment that precise control of the donor:acceptor distance is valuable in optimizing the response of the system.
In order to gain wavelength and analyte flexibility, we have recently altered the transduction approach of our fluorescence-based biosensor. Briefly, binding of metal ions such as zinc to the active site of carbonic anhydrase is transduced by metal-dependent binding of a colored inhibitor to a fluorescent derivative of the enzyme; in the absense of metal the inhibitor does not bind and the label fluorescence is unquenched, but at higher metal concentrations the inhibitor binds, energy transfer occurs with moderate efficiency and the fluorescent label exhibits reduced intensity and lifetime. Inasmush as Forster energy transfer is distance dependent the position of the fluorescent label on the surface of the enzyme has some impact on the performance of the sensor. We designed, produced, and expressed site-selective mutants of carbonic anhydrase which could be unambiguously derivatized with suitable fluorescent labels, and which gave much improved responses to zinc ion compared with randomly derivatized wild type enzyme.
Recently, we have demonstrated a fluorescence-based fiber optic biosensor for zinc in aqueous solutions. Binding of zinc to the active site of human apocarbonic anhydrase II is transduced by subsequent binding of a fluorescent inhibitor, dansylamide, to the zinc in situ, resulting in large changes in the wavelength, quantum yield and lifetime of the danslamide emission. These fluorescence changes can be readily measured through optical fiber, and yield subnanometer detection limits and 50 dB dynamic range with excellent selectivity. However, the dansylamide is only excitable in the ultraviolet, a spectral regime where fiber optic attenuation is very high; longer wavelength fluorescent inhibitors akin to dansylamide are not yet available. Thus we chose a different transduction scheme wherein the enzyme is labeled with a suitable fluorescent tag and the inhibitor is colored, absorbing in the visible region. When zinc is bound the inhibitor can then bind, bringing it in close proximity to the fluorescent tag and allowing energy transfer to occur; the energy transfer can be followed by changes in intensity or, preferably, lifetime. Recent results using gas laser and laser diode excitation will be shown.
Recently, we have described a fiber optic biosensor specific for zinc that transduces the presence of the metal as a shift in the emission of a fluorescent sulfonamide inhibitor that binds to a metalloenzyme, human erythrocyte carbonic anhydrase, if and only if the metal is present. Due to fiber photoluminescence and calibration issues, we decided to determine if comparable results could be obtained by sensing based on fluorescence lifetime changes, as recently described by Demas, Wolfbeis, Lakowicz, and others. Results of these experiments are included, as well as a discussion of the dynamic range of the method.
Measurements of fluorescence lifetimes, rather than intensity or intensity ratios, offer many advantages in clinical chemistry and imaging. However, measurements of time-resolved fluorescence are normally associated with complex laser light sources and instrumentation. In this lecture, we show how emerging technology is enabling the design and use of simple instrumentation for time-resolved fluorescence. In particular, it is now possible to imagine lifetime-based measurements of blood gases and blood glucose, and lifetime imaging of calcium and other ions in microscopic samples.
We describe a homogeneous competitive model immunoassay for determination of thyroxine by multi-frequency phase-modulation fluorescence. Using a non-radiative energy transfer transduction mechanism, B-phycoerythrin conjugated to thyroxine is the energy donor and a carboxymethylindocyanine dye conjugated to anti-thyroxine antibody is the energy acceptor. Energy transfer from B-phycoerythrin to the acceptor results in a decreased lifetime and/or phase angle. The fluorescence lifetime change reflects the extent of energy transfer. In the competitive immunoassay format, the donor-thyroxine conjugate and an analytical sample of thyroxine compete for acceptor-antibody binding sites, resulting in a phase angle change which is dependent on the amount of thyroxine in the sample. Dose response curves of phase angle versus thyroxine concentration demonstrate a broader dynamic range than comparable steady state intensity curves. Since phase-modulation lifetime measurements are largely independent of total signal intensity, sources of optical interference are minimized. The potential for whole blood measurements exists since the energy transfer lifetime method can be extended to longer wavelengths.
Fiber optic sensors for various chemical species are well known in the literature, the majority of which are based on changes in fluorescence intensity or intensity ratios due to the presence of the analyte. Recently, several workers have demonstrated analyses based on fluorescence lifetimes. Fluorescence lifetime measurements were performed through a single optical fiber using a modified phase fluorometer. Results are shown indicating that pH could be accurately measured under these conditions with commercially available indicators and instrumentation. The basis of lifetime sensing in the frequency domain is discussed, together with the origin of the very large dynamic ranges achievable with the technique: greater than 100,000-fold analyte concentration range using a single indicator without multiple equilibria.
To develop an improved fiber optic biosensor both the optical component selection and the signal coupling efficiency were investigated. The emission filter and fiber connectors were carefully chosen to reduce their contribution to noise in the system. We used long, fused silica fibers that had several centimeters of cladding removed along the distal end. This exposed core is coated with the recognition molecules that bind analyte-fluorophore complexes from the sample solution. A fluorescent signal generated in the evanescent wave region of the unclad, immersed portion of the probe is lost as it enters the cladded portion of the fiber because of a V-number mismatch. To minimize the mismatch, the core radius is reduced along the uncladded region to form a continuous taper. An assay using the tapered fiber and the described optical configuration is presented that demonstrates instantaneous signal generation in response to nanogram amounts of a toxic material.
An important class of fiber optic sensors employs evanescent wave-excited fluorescence of labeled molecules bound to the waveguide surface to transduce a molecular recognition event, typically by an antibody. Unfortunately, the monolayer character of the sample, the small surface area, and the relatively low intensity of the evanescent wave all combine to limit sensitivity. In attempting to find a normalized frequency parameter (V number) of the optical fiber that optimized sensitivity, we found that our design (similar to those in the literature) had a loss mechanism which decreases its sensitivity and utility for remote sensing. We introduce here a design feature which addresses the loss mechanism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.