The FlyEye design makes its debut in the ESA’s NEOSTEL developed by OHB-Italia. This pioneering FlyEye telescope integrates a monolithic 1-meter class primary mirror feeding 16 CCD cameras for discovering Near- Earth Object (NEO) and any class of transient phenomena. OHB-Italia is the prime contractor, receiving extended support from the Italian National Institute for Astrophysics (INAF) in the ESA’s NEOSTED program’s integration and testing. The FlyEye distinctive design splits the Field of View into 16 channels, creating a unique multi-telescope system with a panoramic 44 square degree Field of View and a seeing-size pixel-scale, enabling NEOs detection down to apparent magnitudes 21.5 insisting on a 1m diameter spherical mirror. The scientific products of a similar FlyEye telescope can complement facilities such as Vera Rubin (former LSST) and ZTF. The FlyEye has the ability to survey two-thirds of the visible sky about three times per night can revolutionize time-domain astronomy, enabling comprehensive studies of transient phenomena, placing FlyEye in a new era of exploration of the dynamic universe. Efforts to develop automated calibration and testing procedures are keys to realizing this transformative potential.
The ELI-beamlines facility1 is being built within the Extreme Light Infrastructure (ELI) project based on the European ESFRI (European Strategy Forum on Research Infrastructures) process. The alignment of the high power lasers is an essential operation to be performed before shooting. A critical part of the alignment procedure is the definition of the references for the alignment. The most common procedure is to insert a cross shaped mask into the beam path. The centre of the cross defines the optical axis. Because of the difficulties in automatizing this procedure, a semi-automatic procedure is being used in many facilities. During such procedure an operator has to interact with the alignment system. The purpose of this work is to present the alignment process and to show how to use light sources as references for a fully automated alignment system.1, 2
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.