Modern IoT and 5G applications are driving the growth of Internet traffic and impose stringent requirements to datacenter operators for keeping pace with the increasing bandwidth and low-latency demands. At the same time, datacenters suffer from increasing number of interconnections dictating the deployment of novel architectures and high-radix switches. The ratification of 400 GbE standard is driving the market of optical transceivers nevertheless, a technology upgrade will be soon necessary to meet the tremendous traffic growth. In this paper, we present the development of 800 Gb/s and 1Tb/s optical transceivers migrating to 100 Gbaud per lane and employing wafer-scale bonding of InP membranes and InP-DHBT electronics as well as advanced co-packaging schemes. The InP membrane platform is also exploited for the development of novel ultra-fast optical space switches based on a modular architecture design for scaling to large number of I/O ports.
Existing transceiver technology inside data centers will soon reach its limits due to the enormous traffic growth rates driven by new, bandwidth-hungry applications. Efforts to develop the next generation of 800Gbps and 1.6Tbps transceivers for intra-DC optical interconnects have already kicked-off to address the demands in traffic, the exhaustion of the ports at the digital switches and the power consumption limitations inherent to the use of many lower capacity modules. The new generation of optical modules must also provide Terabit capacities at low cost, necessitating the use of high-volume manufacturing processes. TERIPHIC is an EU funded R and D project that aims at developing transceiver modules with up to 1.6 Tbps capacity over 16 lanes in duplex fiber and cost less than 1 € per Gbps for distances up to 2 km, utilizing PAM-4 modulation for 100Gbps per lane and high-volume production compatible transceiver designs. At the component level, TERIPHIC will rely on arrays of high-speed electronics, InP Externally Modulated Lasers (EMLs) and InP photodetectors, and at the integration level it will rely on a polymer photonic platform as a host motherboard, leveraging its flexibility and powerful toolbox. A summary of the progress on the TERIPHIC transceiver modules concept, both at the component level and integration level is presented in this paper.
The ever-increasing demands in traffic fueled by bandwidth hungry applications are pushing data centers to their limits challenging the capacity and scalability of currently established transceiver and switching technologies in data center interconnection (DCI) networks. Coherent optics emerged as a promising solution for inter-DCIs offering unprecedented capacities closer to data centers and relaxing the power budget restrictions of the link. QAMeleon, an EU funded R and D project, is developing a new generation of faster and greener sliceable bandwidth-variable electro-optical transceivers and WSS switches able to handle up to 128 Gbaud optical signals carrying flexible M-QAM constellations and novel modulation techniques. A summary of the progress on the QAMeleon transponder and Reconfigurable Optical Add/Drop Multiplexer (ROADM) concepts is presented in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.