According to the characteristics of the random errors of MIMU, an Allan variance analysis method fused with genetic algorithm is proposed, which can effectively evaluate the different random errors. Firstly, how to analyze and identify the errors of inertial devices by Allan variance analysis method is introduced in detail. Then, according to the characteristics of genetic algorithm that can achieve global optimum, an Allan variance analysis method fused with genetic algorithm is proposed. Finally, by long-time experiment to test the MEMS inertial devices of three different manufacturers, the measured data of gyro and accelerometer are processed and compared respectively, and the numerical results of each random error have been calculated, which proved the validity of the method. This method combines genetic algorithm with Allan variance analysis method, providing a new idea for the theoretical study of random error field in MEMS inertial devices.
In view of the complexity and variability of bathymetric data, the paper introduces a new algorithm named DAE-WGAN to construct sea bottom trend surface. This new model is an alternative to traditional GAN training method, combined with the advantages of Denoising Autoencoder (DAE) and Wasserstein Generative Adversarial Network (WGAN). Firstly, the network structure is introduced in detail, in which the critic (or ‘discriminator’) estimates the Wasserstein-1 distance between the generated-sample distributions and the real-sample distributions, and optimizes the generator to approximate the minimum Wasserstein-1 distance, which effectively improves the stability of the adversarial training. Moreover, the generalized Denoising Autoencoder algorithm is added to train the back-propagation process, having a better ability of dimensionality reduction, which improves the robustness of the whole algorithm. Then, using two different types of bathymetric data (seabed tiny-terrain data and Electronic Nautical Chart data), we had long-time experiments to train the DAE-WGAN till optimality, and got the better sea bottom trend surface. Finally, by comparison with other GAN models (such as InFoGAN, LSGAN), the results show that the proposed method has an obvious improvement in accuracy, stability and robustness, and further illustrate the feasibility of this method in bathymetric precise data processing area.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.