When the Maxwell equations are geometrized, the Maxwell Lagrangian is usually reduced to the Yang-Mills Lagrangian. In this case, the effective quadratic metric, usually corresponding to the Riemannian metric of our space, is considered. However, it is more reasonable to use Finsler approach to Maxwell’s equations. In the paper the Finsler representation of the geometrized Maxwell equations is considered. The comparison with the Riemannian approach also is made.
The Maxwell equations have a fairly simple form. However, finding solutions of Maxwell’s equations is an extremely difficult task. Therefore, various simplifying approaches are often used in optics. One such simplifying approach is to use the approximation of geometric optics. The approximation of geometric optics is constructed with the assumption that the wavelengths are small (short-wavelength approximation). The basis of geometric optics is the eikonal equation. The eikonal equation can be obtained from the wave equation (Helmholtz equation). Thus, the eikonal equation relates the wave and geometric optics. In fact, the eikonal equation is a quasi-classical approximation (the Wentzel–Kramers–Brillouin method) of wave optics. This paper shows the application of geometric methods of electrodynamics to the calculation of optical devices, such as Maxwell and Luneburg lenses. The eikonal equation, which was transformed to the ODE system by the method of characteristics, is considered. The resulting system is written for the case of Maxwell and Luneburg lenses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.