In recent years, the necessity of satellite-to-ground optical communication has increased as a method for realizing higher-speed communications between satellites and the ground. However, one disadvantage of free-space optical (FSO) communication is the significant influence of the atmosphere. FSO communications cannot be utilized under certain atmospheric conditions, such as cloudy skies. One of the solutions to this problem is site diversity, which makes it possible to select a given ground station with better atmospheric conditions among a number of fixed ground stations. The other solution is to prepare a ground station that can be moved to a place with better atmospheric conditions. In this paper, we present the development of a transportable optical ground station currently being researched in NICT.
In order to be transportable, it is necessary to build a system capable of travelling on public roads, installable in every place, and ready to be loaded on relatively-light trucks. For this purpose, a realistic telescope diameter is about 30 cm at the maximum, capable of being set up quickly, and with a pointing accuracy of about 100 μrad. In addition, it is necessary to prepare a fine-pointing optical system that performs tracking with about 1/10 of the pointing accuracy of the telescope. In this research, we will develop the base of the transportable optical ground station using the knowledge of mobile astronomical telescopes. With respect to tracking, we will develop a smaller and lighter fine-tracking system based on NICT’s previous experience. If necessary, we plan to develop an adaptive-optics system for correcting atmospheric disturbances to improve the fiber-coupling efficiency of the communication laser beam.
In National Institute of Information and Communications Technology (NICT) of JAPAN, an ultra high speed optical satellite communication equipment onboard the engineering test satellite IX has been developing. The satellite is planned to be launched to geosynchronous orbit in 2021. In this project, we are aiming for ultra high-speed data transmission at the world's highest level of 10 [Gbps] for both uplink and downlink between optical ground stations and geosynchronous satellite. This paper outlines the optical communication mission, the scheduled optical communication experiment, the examination of HICALI and the ground based system at the present time - the outline of the development situation is also explained.
Recently, satellite broadband communication services using Ka-band are emerging all over the world, some requiring capacities in excess of 100 Gbps. With the radio bandwidth resources becoming exhausted, high-speed optical communications can be used instead to achieve ultra-broadband communications. The National Institute of Information and Communications Technology (NICT) in Japan has over 20 years of experience in R&D of space laser communications with missions such as the Engineering Test Satellite VI (ETS-VI), OICETS, and SOCRATES/SOTA. We are currently developing a laser communication terminal named “HICALI”, aiming to achieve 10 Gbps-class space communications with a 1.5 μm-band laser beam between optical ground stations (OGSs) and the next generation high throughout satellite called ETS-IX with a hybrid communication system using radio and optical frequencies, which will be launched into the geostationary orbit in 2021. Moreover, we have studied laser communication terminals for terrestrial networks, as an alternative wireless system to radio frequency (RF) band. In 2014, we developed a terrestrial free-space optical communications network facility, named INNOVA (IN-orbit and Networked Optical ground stations experimental Verification Advanced testbed). Many demonstrations have been conducted to verify the feasibility of sophisticated optical communications equipment in orbit.
We have conducted a feasibility study of a laser communication terminal for next-generation space networks following the above R&D trends in space communication networks, which is a high-speed, secure, small, and scalable laser communication terminal for optical ground stations (OGSs) and satellites or airborne terminals. In this paper, we describe the plan of NICT to develop a scalable laser communication terminal for next-generation space networks.
Research and development of a novel method for a secure free-space optical communication system has been done in NICT since 2018, and demonstration experiments between an aircraft and a transportable optical ground station are planned in near future. In order to establish a stable and highly accurate optical communication link, the system must have a fine pointing mechanism in both the aircraft and the ground station. A compact and light-weight tracking system is required to be mounted on the aircraft, and there will be needed to have an adjustment function of the beam divergence control to allow stable communication under various altitude and atmospheric conditions. The transportable optical ground station should maintain vibration resistance when moving, and it must be easily deployed on each site where is the appropriate optical ground station site with respect to atmospheric turbulence condition.
Recently, satellite broadband communication services using Ka-band are emerging all over the world, some of them with capacities in excess of 100 Gbps. However, as the radio bandwidth resources become exhausted, high-speed optical communication can be used instead to achieve ultra-broadband communications. The National Institute of Information and Communications Technology (NICT) in Japan has more than 20 years of experience in R&D of space laser communications, with important milestones like ETS-VI (Engineering Test Satellite VI), OICETS, and SOTA. We are currently developing a laser-communication terminal called “HICALI”, which goal is to achieve 10 Gbps-class space communications in the 1.5-μm band between Optical Ground Stations (OGSs) and a next generation high-throughput satellite (called ETS-IX) with a hybrid communication system using radio and optical frequencies, which will be launched into a geostationary orbit in 2021. The development of test and a breadboard model for HICALI has been conducted for several years and we are now carrying out an engineering model as well as designing the OGSs segment. In this paper, we describe concepts and current design status of the HICALI system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.