We combine use of the Zemax Programming Language and an API (Application Programme Interface) feature in the Zemax Opticstudio software which allows for rapid ray-tracing computations and maps of intermediate ray distribution intersections with in-house IDL code to produce maps of stray-light distribution and spectral content of ghost images. The calculation of the spectral amplitude of the latter is performed via prior knowledge of spectral transmission of all optical elements involved in a refractor telescope. The results are of generic nature and can be applied to any optical system. For the numerical examples in this case we consider the JAXA LiteBIRD CMB Medium and High frequency telescopes as a study case and perform a parametric study of the position of its infrared rejecting filters by looking at multiple configurations within a python envelope. By manipulating the resulting intermediate products of ray incidence distribution we determine the optimal position of the filters that will minimize ghost features on the focal plane (or define some competing configurations based on desired outcomes).The resulting analysis is in competition with other aspects of filter positioning (mechanical and thermal) so the results of this optimization is not necessarily a final outcome. Results from such a study can be used to characterize the variation of spectral response across the focal plane caused by the impact angle distribution on the optical coatings and finally the distribution of thermal (out of band) rejected light reflected by the filters on the optical baffles. The first can be obtained with the majority of optical modelling commercial packages, the second are more complex and can also be done in a similar way with packages that perform non-sequential analysis.
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Targets will be chosen to cover a wide range of masses, densities, equilibrium temperatures, and host stellar types to study the physical mechanisms behind the observed diversity in the population of known exoplanets. With a 1-m class telescope, Ariel will detect the atmospheric signatures from the small, < 100 ppm, modulation induced by exoplanets on the bright host-star signals, using transit, eclipse, and phase curve spectroscopy. Three photometric and three spectroscopic channels, with Nyquist sampled focal planes, simultaneously cover the 0.5-7.8 micron region of the electromagnetic spectrum, to maximize observing efficiency and to reduce systematics of astrophysical and instrumental origin. This contribution reviews the predicted Ariel performance as well as the design solutions implemented that will allow Ariel to reach the required sensitivity and control of systematics.
Dichroic beamsplitters, or dichroics, rely on the optical interference that occurs within thin-film layers to ensure the separation of the transmission and reflection of selective wavelengths of an incident beam of light at a given angle of incidence. Utilized within the optical systems of numerous space telescopes, they act to separate the incoming light spectrally and spatially into various channels. As space missions increasingly demand simultaneous observations across wavebands spanning extreme wavelength ranges, the necessity for exceedingly complex broadband dichroics has emerged. Subsequently, the uncertainties pertaining to their optical performance have also become more intricate. We use transmission line modeling to evaluate the spectral performance of multilayer coatings deposited on a substrate material for given thicknesses, materials, angles of incidence, and polarization. A dichroic recipe in line with the typical specifications and requirements of a dichroic is designed with the aid of a Monte Carlo simulation. The tolerances of the coating performance to systematic and random uncertainties from the manufacturing process, as well as from environmental changes in space, are studied. With the aid of accurate manufacturing recipes and uncertainty amplitudes from commercial manufacturers, this tool can predict variations in the optical performance that result from the propagation of each of these uncertainties for various hypothetical scenarios and systematic effects.
Dichroic beamsplitters, or dichroics, are filters that rely on the optical interference that occurs within thin layers to ensure the transmission and reflection of selective wavelengths of an incident beam of light. These optical components consist of a substrate coated on one or both surfaces with multiple layers of thin films, the spectral design and construction of which determine the isolation of particular wavebands. Discrepancies between the measured and expected spectral performance of optical elements with such coatings can largely be attributed to depositions errors and uncertainties in the refractive indices of the materials. Our model uses two-dimensional transmission line modeling to evaluate the transmittance of light through multilayer coatings deposited on a substrate material for given materials, angle of incidence and polarisation. This model allows us to perform Monte Carlo simulations to obtain statistical information about the tolerance of the coating performance to systematic and random uncertainties from the manufacturing process, as well as from environmental changes in space. With the aid of accurate manufacturing recipes and uncertainty amplitudes from commercial manufacturers, this tool can predict variations in the optical performance that result from the propagation of each of these uncertainties for various hypothetical scenarios. One particular application of this study are the dichroics of the ARIEL space telescope. We compare the predicted optical performance with transmission measurements at cryogenic temperatures for one of the ARIEL dichroics, which show the specification compliance of this prototype after many thermal cycles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.