The laser-induced damage of fused silica optics significantly restricts the output ability of large laser systems. Hydrofluoric (HF)-based etching is an effective processing to eliminate impurities and mitigate subsurface defects. Traditional polished fused silica samples were etched for different time in a HF-based etchant (2.3% HF and 11.4% NH4F) assisted by a 1.3 MHz megacoustic field. The laser-induced damage thresholds (LIDT) were measured by R-on-1 method, and fourier transform infrared absorption spectras of the samples were obtained. The results of the LIDT demonstrated that the LIDTs of the fused silica samples increased after megacoustic field assisted etching. The more surface materials were removed, the higher LIDT was obtained. The analysis of the infrared spectra illustrated that structural densification materials were removed during the etching, and thus the LIDT can be improved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.