Advanced thermal annealing processes used for transistor enhancing for the state of the art process nodes induce wafer grid deformations. RTA (Rapid Thermal Anneal) and LSA (Laser Scanning Anneal) processes are a few examples. High Order Wafer Alignment (HOWA) method is an effective wafer alignment strategy for wafers with distorted grid signature especially when wafer-to-wafer grid distortion variations are also present. However, usage of HOWA in high volume production environment requires 1) careful initial determination of optimum polynomial order and alignment sampling to be implemented, and 2) matched tool monitoring and controlling strategies and infrastructures to avoid potential HOWA induced drawbacks (i.e. alignment walking).
KEYWORDS: Metrology, Scatterometry, Critical dimension metrology, Semiconducting wafers, Data modeling, Atomic force microscopy, Transmission electron microscopy, Inspection, 3D metrology
Shrinking design rules and reduced process tolerances require tight control of critical dimension (CD) linewidth, feature shape, and profile of the printed geometry. The holistic metrology approach consists of utilizing all available information from different sources such as data from other toolsets, multiple optical channels, multiple targets, etc., to optimize metrology recipe and improve measurement performance. Various in-line CD metrology toolsets such as scatterometry optical CD, CD-SEM, and CD-AFM are typically utilized individually in fabs. Each of these toolsets has its own set of limitations that are intrinsic to specific measurement technique and algorithm. Here we define "hybrid metrology" to be the use of any two or more metrology toolsets in combination to measure the same dataset. We demonstrate the benefits of the hybrid metrology on two test structures: 22-nm-node gate develop inspect and 32-nm-node fin-shaped field effect transistor gate final inspect. We will cover measurement results obtained using typical BKM (nonhybrid, single toolset standard results) as well as those obtained by utilizing the hybrid metrology approach. Measurement performance will be compared using standard metrology metrics; for example, accuracy and precision.
Shrinking design rules and reduced process tolerances require tight control of CD linewidth, feature shape, and profile of
the printed geometry. The Holistic Metrology approach consists of utilizing all available information from different
sources like data from other toolsets, multiple optical channels, multiple targets, etc. to optimize metrology recipe and
improve measurement performance. Various in-line critical dimension (CD) metrology toolsets like Scatterometry OCD
(Optical CD), CD-SEM (CD Scanning Electron Microscope) and CD-AFM (CD Atomic Force Microscope) are typically
utilized individually in fabs. Each of these toolsets has its own set of limitations that are intrinsic to specific
measurement technique and algorithm. Here we define "Hybrid Metrology" to be the use of any two or more metrology
toolsets in combination to measure the same dataset. We demonstrate the benefits of the Hybrid Metrology on two test
structures: 22nm node Gate Develop Inspect (DI) & 32nm node FinFET Gate Final Inspect (FI). We will cover
measurement results obtained using typical BKM as well as those obtained by utilizing the Hybrid Metrology approach.
Measurement performance will be compared using standard metrology metrics for example accuracy and precision.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.