Maskless electron beam lithography can potentially extend semiconductor manufacturing to the 10 nm logic (16 nm half
pitch) technology node and beyond. KLA-Tencor is developing Reflective Electron Beam Lithography (REBL)
technology targeting high-volume 10 nm logic node performance. REBL uses a novel multi-column wafer writing
system combined with an advanced stage architecture to enable the throughput and resolution required for a NGL
system. Using a CMOS Digital Pattern Generator (DPG) chip with over one million microlenses, the system is capable
of maskless printing of arbitrary patterns with pixel redundancy and pixel-by-pixel grayscaling at the wafer. Electrons
are generated in a flood beam via a thermionic cathode at 50-100 keV and decelerated to illuminate the DPG chip. The
DPG-modulated electron beam is then reaccelerated and demagnified 80-100x onto the wafer to be printed.
Previously, KLA-Tencor reported on the development progress of the REBL tool for maskless lithography at and below
the 10 nm logic technology node. Since that time, the REBL team has made good progress towards developing the
REBL system and DPG for direct write lithography. REBL has been successful in manufacturing a CMOS controlled
DPG chip with a stable charge drain coating and with all segments functioning. This DPG chip consists of an array of
over one million electrostatic lenslets that can be switched on or off via CMOS voltages to pattern the flood electron
beam. Testing has proven the validity of the design with regards to lenslet performance, contrast, lifetime, and pattern
scrolling. This chip has been used in the REBL demonstration platform system for lithography on a moving stage in
both PMMA and chemically amplified resist. Direct imaging of the aerial image has also been performed by magnifying
the pattern at the wafer plane via a mag stack onto a YAG imaging screen. This paper will discuss the chip design
improvements and new charge drain coating that have resulted in a functional DPG chip and will evaluate the current
chip performance on the REBL system. Print results for line/space and device test patterns at the 100nm node will be
presented.
Maskless electron beam lithography has the potential to extend semiconductor manufacturing to the sub-10 nm technology node. KLA-Tencor is currently developing Reflective Electron Beam Lithography (REBL) for high-volume 10 nm logic (16 nm HP). This paper reviews progress in the development of the REBL system towards its goal of 100 wph throughput for High Volume Lithography (HVL) at the 2X and 1X nm nodes. In this paper we introduce the Digital Pattern Generator (DPG) with integrated CMOS and MEMs lenslets that was manufactured at TSMC and IMEC. For REBL, the DPG is integrated to KLA-Tencor pattern generating software that can be programmed to produce complex, gray-scaled lithography patterns. Additionally, we show printing results for a range of interesting lithography patterns using Time Domain Imaging (TDI).
Previously, KLA-Tencor reported on the development of a Reflective Electron Beam Lithography (REBL) tool for maskless lithography at and below the 22 nm technology node1. Since that time, the REBL team and its partners (TSMC, IMEC) have made good progress towards developing the REBL system and Digital Pattern Generator (DPG) for direct write lithography. Traditionally, e-beam direct write lithography has been too slow for most lithography applications. Ebeam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the continued uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for HVL.
KEYWORDS: Electron beam lithography, Semiconducting wafers, Electroluminescence, Lithography, Monte Carlo methods, Reflectivity, Electron beams, Direct write lithography, Silicon, Computer aided design
Maskless electron beam lithography can potentially extend semiconductor manufacturing to the 16 nm technology node
and beyond. KLA-Tencor is developing Reflective Electron Beam Lithography (REBL) targeting high-volume 16 nm
half pitch (HP) production. This paper reviews progress in the development of the REBL system towards its goal of 100
wph throughput for High Volume Manufacturing (HVM) at the 2X and 1X nm nodes. We will demonstrate the ability to
print TSMC test patterns with the integrated system in photoresist on silicon wafers at 45 nm resolution. Additionally,
we present simulation and experimental results that demonstrate that the system meets performance targets for a typical
foundry product mix.
Previously, KLA-Tencor reported on the development of a REBL tool for maskless lithography at and below the 16 nm
HP technology node1. Since that time, the REBL team and its partners (TSMC, IMEC) have made good progress towards
developing the REBL system and Digital Pattern Generator (DPG) for direct write lithography. Traditionally, e-beam
direct write lithography has been too slow for most lithography applications. E-beam direct write lithography has been
used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the continued uncertainty with regards to the optical lithography roadmap beyond the 16 nm HP technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for HVM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.