EuPRAXIA@SPARC_LAB is a new multi-disciplinary user-facility that is currently under construction at the Laboratori Nazionali di Frascati of the INFN in the framework of the EuPRAXIA collaboration. The electron beam will be accelerated by an X-band normal conducting linac followed by a Plasma WakeField Acceleration (PWFA) stage. It will be characterized by a small footprint and it will drive two FEL beamlines for experiments, one in the VUV (50 to 180 nm) and the other in the XUV-soft x-rays (4 to 10 nm) spectral region. As an ancillary beamline, we are also including a betatron source in the x-ray from laser-plasma interaction. We present the status update of our facility.
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.
The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.
A. Mostacci, D. Alesini, M. P. Anania, A. Bacci, M. Bellaveglia, A. Biagioni, F. Cardelli, Michele Castellano, Enrica Chiadroni, Alessandro Cianchi, M. Croia, Domenico Di Giovenale, Giampiero Di Pirro, Massimo Ferrario, Francesco Filippi, Alessandro Gallo, Giancarlo Gatti, Anna Giribono, L. Innocenti, A. Marocchino, M. Petrarca, L. Piersanti, S. Pioli, Riccardo Pompili, Stefano Romeo, Andrea Renato Rossi, V. Shpakov, J. Scifo, Cristina Vaccarezza, Fabio Villa, L. Weiwei
Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.
Fabio Villa, David Alesini, Maria Pia Anania, Marcello Artioli, Alberto Bacci, Marco Bellaveglia, Mariano Carpanese, Michele Castellano, Alessandro Cianchi, Franco Ciocci, Enrica Chiadroni, Giuseppe Dattoli, Domenico Di Giovenale, Emanuele Di Palma, Giampiero Di Pirro, Massimo Ferrario, Francesco Filippi, Alessandro Gallo, Giancarlo Gatti, Luca Giannessi, Anna Giribono, Luca Innocenti, Najmeh Sada Mirian, Andrea Mostacci, Alberto Petralia, Vittoria Petrillo, Riccardo Pompili, Julietta Rau, Stefano Romeo, Andrea Renato Rossi, Elio Sabia, Vladimir Shpakov, Ivan Spassovsky, Cristina Vaccarezza
We present the experimental evidence of the generation of coherent and statistically stable Free-Electron Laser (FEL) two color radiation obtained by seeding an electron double peaked beam in time and energy with a single peaked laser pulse. The FEL radiation presents two neat spectral lines, with time delay, frequency separation and relative intensity that can be accurately controlled. The analysis of the emission shows a temporal coherence and regularity in frequency significantly enhanced with respect to the Self Amplified Spontaneous Emission (SASE).
The laser-plasma wakefield accelerator is a novel ultra-compact particle accelerator. A very intense laser pulse focused onto plasma can excites plasma density waves. Electrons surfing these waves can be accelerated to very high energies with unprecedented accelerating gradients in excess of 1 GV/cm. While accelerating, electrons undergo transverse betatron oscillations and emit synchrotron-like x-ray radiation into a narrow on-axis cone, which is enhanced when electrons interact with the electromagnetic field of the laser. In this case, the laser can resonantly drive the electron motion, lading to direct laser acceleration. This occurs when the betatron frequency matches the Doppler down-shifted frequency of the laser. As a consequence, the number of photons emitted is strongly enhanced and the critical photon energy is increases to 100’s of keV.
KEYWORDS: Free electron lasers, Magnetism, Electron beams, Physics, Optical simulations, Space operations, Polarization, Harmonic generation, Spectroscopy, Signal generators
A short period undulator (1.4 cm) has been designed for the SPARC-FEL test facility and has been realized in collaboration with KYMA Srl. It has been installed on the undulator line at SPARC. The undulator, operating in a delta like mode, has been used as radiator in a segmented configuration. The first stage being provided by the five undulators of the SPARC FEL source “old” chain, with period 2.8 cm. The KYMA undulator has a quatrefoil structure, a high magnetic field homogeneity and focuses both in vertical and radial directions. The two sections, namely the bunching and radiating parts, are arranged in such a way that the second is adjusted on a harmonic of the first. Laser action occurring in the second part, is due to the bunching acquired in the first. Simulations of the temporal and spectral profiles in different electron beam operating conditions are reported, as well as the evolution of the longitudinal phase space. The agreement with the experimental results is discussed The importance of this experiment is at least threefold: 1) It proves that the segmented undulator can successfully be operated 2) It proves that the laser emission in the last undulator is entirely due to the bunching mechanism, being no second harmonic signal present in the first segment 3) Encourages various improvements of the configuration itself, as e.g. the use of a further undulator with variable magnetic field configuration in order to obtain a laser field with adjustable polarization.
To create very short electron bunches or comb-like beams, able to drive a SASE-FEL, to produce THz radiation, or to drive a plasma beam driven accelerator is needed advanced phase space manipulation. The characterization of the 6D phase space is of paramount importance in order to verify that the beam parameters fulfill the expectation. At SPARCLAB we have integrated several longitudinal and transverse beam diagnostics for single bunch or for a train of comb-like bunches at THz repetition rate. Longitudinal diagnostic is based on RF deflecting cavity and a dispersive element. Quadrupole scan technique is used to measure the transverse emittance in single bunch mode or in conjunction respectively with a dipole, to separate beams of different energy, and RF deflector, to discriminates bunches with different time of arrival.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.
In this paper we discuss the spectra of the electrons produced in the laser-plasma acceleration experiment at
FLAME. Here a <30 fs laser pulse is focused via an f/10 parabola in a focal spot of 10 μm diameter into a 1.2
mm by 10 mm rectangular Helium gas-jets at a backing pressure ranging from 5 to 15 bar. The intensity achieved
exceeds 1019 Wcm −2. In our experiment the laser is set to propagate in the gas-jet along the longitudinal axis to use the 10 mm gas-jet length and to evaluate the role of density gradients. The propagation of the laser pulse in the gas is monitored by means of a Thomson scattering optical imaging. Accelerated electrons are set to
propagate for 47,5 cm before being detected by a scintillating screen to evaluate bunch divergence and pointing.
Alternatively, electrons are set to propagate in the field of a magnetic dipole before reaching the scintillating screen in order to evaluate their energy spectrum. Our experimental data show highly collimated bunches (<1 mrad) with a relatively stable pointing direction (<10 mrad). Typical bunch electron energy ranges between 50 and 200 MeV with occasional exceptional events of higher energy up to 1GeV.
The normalised transverse emittance is a measure of the quality of an electron beam from a particle accelerator. The
brightness, parallelism and focusability are all functions of the emittance. Here we present a high-resolution single shot
method of measuring the transverse emittance of a 125 ± 3 MeV electron beam generated from a laser wakefield
accelerator (LWFA) using a pepper-pot mask. An average normalised emittance of εrms,x,y = 2.2 ± 0.7, 2.3 ± 0.6 π-mmmrad
was measured, which is comparable to that of a conventional linear accelerator. The best measured emittance was
εrms,x,=1.1 ± 0.1 π-mm-mrad, corresponding to the resolution limit of our system. The low emittance indicates that this
accelerator is suitable for driving a compact free electron laser.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma
accelerators for the production of ultra-short electron bunches with subsequent generation of high brilliance,
short-wavelength radiation pulses. Ti:sapphire laser systems with peak power in the range 20-200 TW are coupled into
mm- and cm-scale plasma channels in order to generate electron beams of energy 50-800 MeV. Ultra-short radiation
pulses generated in these compact sources will be of tremendous benefit for time-resolved studies in a wide range of
applications across many branches of science. Primary mechanisms of radiation production are (i) betatron radiation due
to transverse oscillations of the highly relativistic electrons in the plasma wakefield, (ii) gamma ray bremsstrahlung
radiation produced from the electron beams impacting on metal targets and (iii) undulator radiation arising from
transport of the electron beam through a planar undulator. In the latter, free-electron laser action will be observed if the
electron beam quality is sufficiently high leading to stimulated emission and a significant increase in the photon yield.
All these varied source types are characterised by their high brilliance arising from the inherently short duration (~1-10
fs) of the driving electron bunch.
KEYWORDS: Free electron lasers, Lens design, Electron beams, Optical simulations, Magnetism, Radio propagation, Plasma, Electron transport, Capillaries, Particles
Focussing ultra-short electron bunches from a laser-plasma wakefield accelerator into an undulator requires
particular attention to be paid to the emittance, electron bunch duration and energy spread. Here we present
the design and implementation of a focussing system for the ALPHA-X beam transport line, which consists of
a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles.
The transverse emittance is an important parameter governing the brightness of an electron beam. Here we
present the first pepper-pot measurement of the transverse emittance for a mono-energetic electron beam from a
laser-plasma wakefield accelerator, carried out on the Advanced Laser-Plasma High Energy Accelerators towards
X-Rays (ALPHA-X) beam line. Mono-energetic electrons are passed through an array of 52 μm diameter holes in
a tungsten mask. The pepper-pot results set an upper limit for the normalised emittance at 5.5 ± 1 π mm mrad
for an 82 MeV beam.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma
accelerators for the production of ultra-short electron bunches with subsequent generation of incoherent radiation
pulses from plasma and coherent short-wavelength radiation pulses from a free-electron laser (FEL). The first
quantitative measurements of the electron energy spectra have been made on the University of Strathclyde ALPHA-X
wakefield acceleration beam line. A high peak power laser pulse (energy 900 mJ, duration 35 fs) is focused into a gas jet
(nozzle length 2 mm) using an F/16 spherical mirror. Electrons from the laser-induced plasma are self-injected into the
accelerating potential of the plasma density wake behind the laser pulse. Electron beams emitted from the plasma have
been imaged downstream using a series of Lanex screens positioned along the beam line axis and the divergence of the
electron beam has been measured to be typically in the range 1-3 mrad. Measurements of the electron energy spectrum,
obtained using the ALPHA-X high resolution magnetic dipole spectrometer, are presented. The maximum central energy
of the monoenergetic beam is 90 MeV and r.m.s. relative energy spreads as low as 0.8% are measured. The mean central
energy is 82 MeV and mean relative energy spread is 1.1%. A theoretical analysis of this unexpectedly high electron
beam quality is presented and the potential impact on the viability of FELs driven by electron beams from laser
wakefield accelerators is examined.
Electron acceleration using plasma waves driven by ultra-short relativistic intensity laser pulses has
undoubtedly excellent potential for driving a compact light source. However, for a wakefield accelerator to
become a useful and reliable compact accelerator the beam properties need to meet a minimum standard. To
demonstrate the feasibility of a wakefield based radiation source we have reliably produced electron beams
with energies of 82±5 MeV, with 1±0.2% energy spread and 3 mrad r.m.s. divergence using a 0.9 J, 35 fs 800
nm laser. Reproducible beam pointing is essential for transporting the beam along the electron beam line. We
find experimentally that electrons are accelerated close to the laser axis at low plasma densities. However, at
plasma densities in excess of 1019 cm-3, electron beams have an elliptical beam profile with the major axis of
the ellipse rotated with respect to the direction of polarization of the laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.