We report a systematic study of the feasibility of using directed self-assembly (DSA) in real product design for 7-nm fin field effect transistor (FinFET) technology. We illustrate a design technology co-optimization (DTCO) methodology and two test cases applying both line/space type and via/cut type DSA processes. We cover the parts of DSA process flow and critical design constructs as well as a full chip capable computational lithography framework for DSA. By co-optimizing all process flow and product design constructs in a holistic way using a computational DTCO flow, we point out the feasibility of manufacturing using DSA in an advanced FinFET technology node and highlight the issues in the whole DSA ecosystem before we insert DSA into manufacturing.
In this paper, we study the impact of topographic guide or template properties on pattern formation in a directed self-assembly (DSA) process. In particular, we investigate the relationship between free energy and defect generation or process robustness, and analyze the influence of guide affinity. The good correlation between experimental and simulation results confirms the role of certain setup parameters and process conditions on the DSA patterning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.