Furthermore, on acute 3-dimensional semiconductor topography, the creation of highly doped abrupt, ultra-shallow junctions with three-dimensional control are essential for successful source-drain contacts. In consideration of this need, we extended the above polymer brush concept further by incorporating a suitable implant dopant atom, such as boron, into the monomer structure. After conformal coating and a subsequent rapid thermal annealing process, the dopant atom is driven into the semiconductor substrate underneath the polymer film. This is potentially very useful for uniform all-around doping of 3-dimensional topography such as FinFETs or Nanowire-FETs. A high dopant dosage on silicon substrate with appropriate shallow implant characteristics was demonstrated for the end-functionalized dopant polymer brush, highlighting one of the promising applications of such conformal coatings.
Using MC-SIMS methodology, we directly measured key factors influencing the PAG homogeneity at the nanoscale including (1) PAG concentration, (2) the nature of the polymer matrix, (3) the nature of the PAG, and (4) additives. We discovered that 85-95% of PAG salts aggregate at the nanoscale. The majority of the PAG aggregates are less than 10 nm in size and are highly homogeneously distributed within the polymer matrix in the film. Furthermore, the size of the PAG aggregates can be manipulated by additives through an ion-exchange mechanism.
View contact details