Computational technologies are still in the course of development for nanoimprint lithography (NIL). Only a few simulators are applicable to the nanoimprint process, and these simulators are desired by device manufacturers as part of their daily toolbox. The most challenging issue in NIL process simulation is the scale difference of each component of the system. The template pattern depth and the residual resist film thickness are generally of the order of a few tens of nanometers, whereas the process needs to work over the entire shot size, which is typically of the order of several hundred square millimeters. This amounts to a scale difference of the order of 106. Therefore, in order to calculate the nanoimprint process with conventional fluid structure interaction simulators, an enormous number of meshes is required, which results in computation times that are unacceptable. We introduce a process simulator which directly inputs the process parameters, simulates the whole imprinting process, and evaluates the quality of the resulting resist film for jet and flash imprint lithography process. To overcome the scale differences, our simulator utilizes analytically integrated expressions which reduce the dimensions of the calculation region. In addition, the simulator can independently consider the resist droplet configurations and calculate the droplet coalescence, thereby predicting the distribution of the non-fill areas which originate from the trapped gas between the droplets. The simulator has been applied to the actual NIL system and some examples of its applications are presented here.
Computational technologies are still in the course of development for nanoimprint lithography (NIL). Only a few simulators are applicable to the nanoimprint process, and these simulators are desired by device manufacturers as part of their daily toolbox. The most challenging issue in NIL process simulation is the scale difference of each component of the system. The template pattern depth and the residual resist film thickness are generally of the order of a few tens of nanometers, while the process needs to work over the entire shot size, which is typically of the order of 10 mm square. This amounts to a scale difference of the order of 106. Therefore, in order to calculate the nanoimprint process with conventional fluid structure interaction (FSI) simulators, an enormous number of meshes is required, which results in computation times that are unacceptable. In this paper, we introduce a new process simulator which directly inputs the process parameters, simulates the whole imprinting process, and evaluates the quality of the resulting resist film. To overcome the scale differences, our simulator utilizes analytically integrated expressions which reduce the dimensions of the calculation region. In addition, the simulator can independently consider the positions of the droplets and calculate the droplet coalescence, thereby predicting the distribution of the non-fill areas which originate from the trapped gas between the droplets. The simulator has been applied to the actual NIL system and some examples of its applications are presented here.
Imprint lithography is an effective and well known technique for replication of nano-scale features. Nanoimprint lithography (NIL) manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of wide-diameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Given that there are no complicated optics in the imprint system, the reduction in the cost of the tool, when combined with simple single level processing and zero waste leads to a cost model that is very compelling for semiconductor memory applications. Any new technology to be introduced into manufacturing must deliver either a performance advantage or a cost advantage. Given the risks associated with this introduction, generally a combination of both performance and cost advantage is preferred. In this paper both performance attributes and cost are discussed. NIL resolution and linewidth roughness do not have the limitations of conventional projection lithographic method. Furthermore, it is not subject to patterning restrictions that forced the industry towards one dimensional patterning. A cost example case of 20nm dense contacts is also presented. Because NIL utilized a single step patterning approach, process costs are substantially reduced relative to ArF immersion lithography. Overall, NIL currently realizes a 28% cost advantage for this case, but as mask life continues to improve, the cost advantages become much more significant.
Imprint lithography is an effective and well known technique for replication of nano-scale features. Nanoimprint lithography (NIL) manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of widediameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Given that there are no complicated optics in the imprint system, the reduction in the cost of the tool, when combined with simple single level processing and zero waste leads to a cost model that is very compelling for semiconductor memory applications. Any new technology to be introduced into manufacturing must deliver either a performance advantage or a cost advantage. Given the risks associated with this introduction, generally a combination of both performance and cost advantage is preferred. In this paper both performance attributes and cost are discussed. NIL resolution and linewidth roughness do not have the limitations of conventional projection lithographic method. Furthermore, it is not subject to patterning restrictions that forced the industry towards one dimensional patterning. A cost example case of 20nm dense contacts is also presented. Because NIL utilized a single step patterning approach, process costs are substantially reduced relative to ArF immersion lithography. Overall, NIL currently realizes a 28% cost advantage for this case, but as mask life continues to improve, the cost advantages become much more significant.
Nanoimprint Lithography (NIL) has been shown to be an effective technique for replication of nano-scale features.
Jet and Flash Imprint Lithography* (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist
deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows
into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV
radiation, and then the mask is removed, leaving a patterned resist on the substrate.
There are many criteria that determine whether a particular technology is ready for high volume semiconductor
manufacturing. Included on the list are overlay, throughput and defectivity.
Imprint lithography, like any lithographic approach requires that defect mechanisms be identified and eliminated in
order to consistently yield a device. NIL has defect mechanisms unique to the technology, and they include liquid phase
defects, solid phase defects and particle related defects. Especially more troublesome are hard particles on either the
mask or wafer surface. Hard particles run the chance of creating a permanent defect in the mask, which cannot be
corrected through a mask cleaning process. If Cost of Ownership (CoO) requirements are to be met, it is critical to
minimize particle formation and extend mask life.
To meet the CoO requirements, mask life must meet or exceed 1000 wafers. If, we make the conservative assumption
that every particles causes damage to the mask pattern, the number of particle adders must be less than 0.001 pieces per
wafer pass in the NIL tool. Therefore, aggressive strategies are needed to reduce particles in the tool.
In this paper, we will report on the techniques required to meet this condition and will describe how the particle
reduction techniques can be extended to our FPA-1200NZ2C system.
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is cross-linked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate.
Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made in the reduction of particle adders in an imprint tool.
Hard particles on a wafer or mask create the possibility of creating a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, test stand results demonstrate the potential for extending mask life to better than 1000 wafers.
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and
Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist
deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows
into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV
radiation, and then the mask is removed, leaving a patterned resist on the substrate.
There are many criteria that determine whether a particular technology is ready for wafer manufacturing. Defectivity
and mask life play a significant role relative to meeting the cost of ownership (CoO) requirements in the production of
semiconductor devices. Hard particles on a wafer or mask create the possibility of inducing a permanent defect on the
mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by
introducing an air curtain system, the lifetime of both the master mask and the replica mask can be extended. In this
work, we report results that demonstrate a path towards achieving mask lifetimes of better than 1000 wafers.
On the mask side, a new replication tool, the FPA-1100 NR2 is introduced. Mask replication is required for
nanoimprint lithography (NIL), and criteria that are crucial to the success of a replication platform include both particle
control, resolution and image placement accuracy. In this paper we discuss the progress made in both feature resolution
and in meeting the image placement specification for replica masks.
In emerging high-vacuum multi e-beams exposure tools, the release of hydrocarbonaceous species (precursor) by resists outgassing is unavoidable and leads to premature contamination of optics projection systems. In this work, we present an experimental methodology aiming at resist outgassing qualification. A specific experimental setup was designed to monitor the induced outgassing phenomena by irradiating resist coated on 100mm silicon wafer. The wafer can be exposed through specific silicon micromachined membranes (called mimics) that are representative of the optics projection system usually embedded in real multi e-beam exposure tools. A Quadrupole Mass Spectrometer (QMS) is plugged into the vacuum chamber and enables in-situ analysis of the by-products outgassing. Combining this tool with the Thermo Desorption - Gas Chromatography coupled to Mass Spectroscopy (TD-GC-MS) analysis, we could not only determine the outgassing amount of different resists but also identify all the outgassed by-products and their origin. Finally, the Focus Ion Beam combined to Scanning Electron Microscopy (FIB-SEM) and X-ray Photoelectron Spectroscopy (XPS) characterization techniques were used to determine the contamination layer thickness and elementary composition, respectively. A first process oriented conclusion from this work shows that the use of a thin topcoat layer can considerably reduce the resist outgassing amount and, consequently, the hydrocarbonaceous contamination layer induced on the mimics. The outgassing amount as well as the top-coat efficiency was shown to be mainly dependent on the resist chemical properties. The contamination layer growth was shown to be dependent on e-beam current density and hydrocarbon pressure in the vicinity of the mimics.
It is very important to mitigate oxidation of multilayer mirrors (MLMs) and carbon deposition onto MLMs to extend the
lifetime of EUV exposure tool. In order to estimate the lifetime, we have to figure out scaling law. Previous results at
EUVA have shown that carbon deposition rate on MLMs is not proportional to every hydrocarbon partial pressure and
every EUV intensity3-4. In this study we focused on carbon deposition on Si-capped multilayer mirror. We made
experiments of EUV irradiation to the MLMs using two different apparatuses. One is connected to a beamline (SBL-2)
of synchrotron radiation facility Super-ALIS in the NTT Atsugi research and development center, and the other is
connected to a beamline (BL9) of synchrotron radiation facility New SUBARU in the University of Hyogo. As the result
of experiments, we found that different carbon deposition rate occurred on the different beamlines, although they have
the same average EUV intensity. We present differences of carbon deposition rate on MLMs between two different
beamlines and estimation of carbon deposition rate on EUV tool analyzing dependences of carbon deposition rate on
characteristics of EUV source.
It is very important to mitigate oxidation of multilayer mirrors (MLMs) and carbon deposition onto MLMs to extend the
lifetime of EUV exposure tool. We focused on carbon deposition on Si-capped multilayer mirror. We made experiments
of EUV irradiation to the multilayer mirrors using an EUV irradiation apparatus connected to a beam line (SBL -2) of
synchrotron radiation facility Super-ALIS in the NTT Atsugi research and development center. Thickness of deposited
carbon was obtained by using XPS. We investigated carbon deposition rates at various partial pressures of various
organic species. Phenomenological analysis was applied to the obtained carbon deposition rate. Carbon deposition rate
was proportional to the pressure at the proportional EUV intensity. Applying this normalization of the deposition rate
and the EUV intensity, carbon deposition rate seems to behave according to each universal function for each
hydrocarbon species.
We investigated the protection of a Ru-capped Mo/Si multilayer from surface oxidation under exposure to EUV
radiation in the presence of water vapor and isopropyl alcohol (IPA). Degradation of the reflectance of the Ru-capped
Mo/Si multilayer by EUV irradiation was controlled by introducing IPA gas. We also investigated the reduction effect of
the oxide layer in a multilayer mirror by introducing ethanol and exposed EUV. The Ru-capped multilayer sample was
exposed to EUV radiation in the presence of only water vapor to oxidize its surface. The reflectance decreased by about
1.5%. Then the sample was exposed to EUV radiation in the presence of only ethanol vapor. The reflectivity of the
sample was recovered to +0.5%, and the atomic concentration of oxygen in the irradiated area was decreased by EUV
irradiation in the presence of ethanol.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.